

Twido programmable
controllers
Software Reference Guide
TWD USE 10AE eng Version 2.5

2

Table of Contents
Safety Information . 11

About the Book .15

Part I Description of Twido Software . 17
At a Glance . 17

Chapter 1 Introduction to Twido Software . 19
At a Glance . 19
Introduction to TwidoSoft. 20
Introduction to Twido Languages . 21

Chapter 2 Twido Language Objects .25
At a Glance . 25
Language Object Validation . 26
Bit Objects . 27
Word Objects. 29
Floating point and double word objects. 32
Addressing Bit Objects . 36
Addressing Word Objects . 37
Addressing floating objects . 38
Addressing double word objects . 39
Addressing Inputs/Outputs . 40
Network Addressing . 42
Function Block Objects . 43
Structured Objects. 45
Indexed objects . 48
Symbolizing Objects . 50

Chapter 3 User Memory . 51
At a Glance . 51
User Memory Structure . 52
Backup and Restore without Backup Cartridge or Extended Memory 54
Backup and Restore with a 32K Backup Cartridge . 56
Using the 64K Extended Memory Cartridge . 59
3

Chapter 4 Controller Operating Modes . 61
At a Glance . 61
Cyclic Scan . 62
Periodic Scan. 64
Checking Scan Time . 67
Operating Modes . 68
Dealing with Power Cuts and Power Restoration . 70
Dealing with a warm restart . 72
Dealing with a cold start. 74
Initialization of objects . 76

Chapter 5 Event task management . 77
In Brief.... 77
Overview of event tasks. 78
Description of different event sources . 79
Event management . 81

Part II Special Functions .83
At a Glance . 83

Chapter 6 Communications . 85
At a Glance . 85
Presentation of the different types of communication . 87
TwidoSoft to Controller communications . 89
Communication between TwidoSoft and a Modem . 95
Remote Link Communications. 105
ASCII Communications . 119
Modbus Communications . 129
Standard Modbus Requests . 143
Ethernet TCP/IP Communications Overview. 149
Quick TCP/IP Setup Guide for PC-to-Controller Ethernet Communication 150
Connecting your Controller to the Network . 155
IP Addressing. 156
Assigning IP Addresses. 158
TCP/IP Setup. 162
IP Address Configure Tab . 164
Marked IP Tab . 166
Idle Checking Tab . 168
Remote Devices Tab . 170
Viewing the Ethernet Configuration . 172
Ethernet Connections Management . 173
Ethernet LED Indicators. 175
TCP Modbus Messaging . 177

Chapter 7 Built-In Analog Functions . 183
At a Glance . 183
4

Analog potentiometer . 184
Analog Channel. 185

Chapter 8 Managing Analog Modules .187
At a Glance . 187
Analog Module Overview . 188
Addressing Analog Inputs and Outputs. 189
Configuring Analog Inputs and Outputs . 190
Analog Module Status Information . 192
Example of Using Analog Modules . 193

Chapter 9 Installing the AS-Interface V2 bus. 195
At a Glance . 195
Presentation of the AS-Interface V2 bus. 196
General functional description. 197
Software set up principles . 200
Description of the configuration screen for the AS-Interface bus 202
Configuration of the AS-Interface bus . 204
Description of the debug screen . 210
Modification of Slave Address. 213
Updating the AS-Interface bus configuration in online mode 215
Automatic addressing of an AS-Interface V2 slave . 220
How to insert a slave device into an existing AS-Interface V2 configuration. . . 221
Automatic replacement of a faulty AS-Interface V2 slave 222
Addressing I/Os associated with slave devices connected to the AS-Interface V2
bus. 223
Programming and diagnostics for the AS-Interface V2 bus 225
AS-Interface V2 bus interface module operating mode: 230

Chapter 10 Operator Display Operation . 231
At a Glance . 231
Operator Display . 232
Controller Identification and State Information . 235
System Objects and Variables . 237
Serial Port Settings . 244
Time of Day Clock. 245
Real-Time Correction Factor . 246

Part III Description of Twido Languages 247
At a Glance . 247

Chapter 11 Ladder Language .249
At a Glance . 249
Introduction to Ladder Diagrams. 250
Programming Principles for Ladder Diagrams . 252
Ladder Diagram Blocks. 254
5

Ladder Language Graphic Elements . 257
Special Ladder Instructions OPEN and SHORT . 260
Programming Advice . 261
Ladder/List Reversibility. 265
Guidelines for Ladder/List Reversibility . 266
Program Documentation . 268

Chapter 12 Instruction List Language . 271
At a Glance . 271
Overview of List Programs. 272
Operation of List Instructions . 274
List Language Instructions. 275
Using Parentheses. 278
Stack Instructions (MPS, MRD, MPP) . 280

Chapter 13 Grafcet . 283
At a Glance . 283
Description of Grafcet Instructions. 284
Description of Grafcet Program Structure . 289
Actions Associated with Grafcet Steps . 293

Part IV Description of Instructions and Functions 295
At a Glance . 295

Chapter 14 Basic Instructions . 297
At a Glance . 297

14.1 Boolean Processing. 299
At a Glance . 299
Boolean Instructions . 300
Understanding the Format for Describing Boolean Instructions 302
Load Instructions (LD, LDN, LDR, LDF) . 304
Assignment instructions (ST, STN, R, S). 306
Logical AND Instructions (AND, ANDN, ANDR, ANDF) 308
Logical OR Instructions (OR, ORN, ORR, ORF) . 310
Exclusive OR, instructions (XOR, XORN, XORR, XORF) 312
NOT Instruction (N) . 314

14.2 Basic Function Blocks . 316
At a Glance . 316
Basic Function Blocks . 317
Standard function blocks programming principles . 319
Timer Function Block (%TMi). 321
TOF Type of Timer. 323
TON Type of Timer . 324
TP Type of Timer . 325
Programming and Configuring Timers. 326
Up/Down Counter Function Block (%Ci) . 329
6

Programming and Configuring Counters. 332
Shift Bit Register Function Block (%SBRi) . 334
Step Counter Function Block (%SCi) . 336

14.3 Numerical Processing . 340
At a Glance . 340
Introduction to Numerical Instructions. 341
Assignment Instructions . 342
Comparison Instructions . 347
Arithmetic Instructions on Integers . 349
Logic Instructions . 352
Shift Instructions . 354
Conversion Instructions. 356
Single/double word conversion instructions . 358

14.4 Program Instructions . 359
At a Glance . 359
END Instructions . 360
NOP Instruction. 362
Jump Instructions . 363
Subroutine Instructions . 364

Chapter 15 Advanced Instructions .367
At a Glance . 367

15.1 Advanced Function Blocks . 369
At a Glance . 369
Bit and Word Objects Associated with Advanced Function Blocks. 370
Programming Principles for Advanced Function Blocks 372
LIFO/FIFO Register Function Block (%Ri) . 374
LIFO Operation . 376
FIFO,operation . 377
Programming and Configuring Registers . 378
Pulse Width Modulation Function Block (%PWM). 381
Pulse Generator Output Function Block (%PLS) . 384
Drum Controller Function Block (%DR). 387
Drum Controller Function Block %DRi Operation . 389
Programming and Configuring Drum Controllers . 391
Fast Counter Function Block (%FC) . 393
Very Fast Counter Function Block (%VFC). 396
Transmitting/Receiving Messages - the Exchange Instruction (EXCH) 408
Exchange Control Function Block (%MSGx). 409

15.2 Clock Functions. 413
At a Glance . 413
Clock Functions. 414
Schedule Blocks . 415
Time/Date Stamping . 418
Setting the Date and Time. 420

15.3 PID Function . 424
7

At a Glance . 424
Overview . 425
Principal of the Regulation Loop . 426
Development Methodology of a Regulation Application 427
Compatibilities and Performances . 428
Detailed characteristics of the PID function . 429
How to access the PID configuration. 432
General tab of PID function . 434
Input tab of the PID . 437
PID tab of PID function . 439
AT tab of PID function . 442
Output tab of the PID . 447
How to access PID debugging. 450
Animation tab of PID function . 452
Trace tab of PID function . 454
PID States and Errors Codes. 456
PID Tuning With Auto-Tuning (AT) . 460
PID parameter adjustment method . 469
Role and influence of PID parameters. 472
Appendix 1: PID Theory Fundamentals . 476
Appendix 2: First-Order With Time Delay Model . 478

15.4 Floating point instructions . 480
At a Glance . 480
Arithmetic instructions on floating point . 481
Trigonometric Instructions . 484
Conversion instructions . 486
Integer Conversion Instructions <-> Floating. 488

15.5 Instructions on Object Tables . 491
At a Glance . 491
Table summing functions. 492
Table comparison functions. 494
Table search functions . 496
Table search functions for maxi and mini values . 498
Number of occurrences of a value in a table . 499
Table rotate shift function . 500
Table sort function . 502
Floating point table interpolation function . 503
Mean function of the values of a floating point table . 507
8

Chapter 16 System Bits and System Words . 509
At a Glance . 509
System Bits (%S) . 510
System Words (%SW). 517

Glossary . 527

Index . 539
9

10

§

Safety Information
Important Information

NOTICE Read these instructions carefully, and look at the equipment to become familiar with
the device before trying to install, operate, or maintain it. The following special
messages may appear throughout this documentation or on the equipment to warn
of potential hazards or to call attention to information that clarifies or simplifies a
procedure.

The addition of this symbol to a Danger or Warning safety label indicates
that an electrical hazard exists, which will result in personal injury if the
instructions are not followed.

This is the safety alert symbol. It is used to alert you to potential personal
injury hazards. Obey all safety messages that follow this symbol to avoid
possible injury or death.

DANGER indicates an imminently hazardous situation, which, if not avoided, will
result in death, serious injury, or equipment damage.

DANGER

WARNING
WARNING indicates a potentially hazardous situation, which, if not avoided, can result
in death, serious injury, or equipment damage.

CAUTION
CAUTION indicates a potentially hazardous situation, which, if not avoided, can result
in injury or equipment damage.
TWD USE 10AE 11

Safety Information
PLEASE NOTE Electrical equipment should be serviced only by qualified personnel. No responsi-
bility is assumed by Schneider Electric for any consequences arising out of the use
of this material. This document is not intended as an instruction manual for untrained
persons. Assembly and installation instructions are provided in the Twido Hardware
Reference Manual, TWD USE 10AE.
(c) 2002-2004 Schneider Electric All Rights Reserved

Additional Safety
Information

Those responsible for the application, implementation or use of this product must
ensure that the necessary design considerations have been incorporated into each
application, completely adhering to applicable laws, performance and safety
requirements, regulations, codes and standards.
12 TWD USE 10AE

Safety Information
General
Warnings and
Cautions WARNING

EXPLOSION HAZARD

Substitution of components may impair suitability for Class I, Div 2
compliance.
Do not disconnect equipment unless power has been switched off or
the area is known to be non-hazardous.

Failure to follow this precaution can result in death, serious injury,
or equipment damage.

WARNING
UNINTENDED EQUIPMENT OPERATION

Turn power off before installing, removing, wiring, or maintaining.
This product is not intended for use in safety critical machine
functions. Where personnel and or equipment hazards exist, use
appropriate hard-wired safety interlocks.
Do not disassemble, repair, or modify the modules.
This controller is designed for use within an enclosure.
Install the modules in the operating environment conditions
described.
Use the sensor power supply only for supplying power to sensors
connected to the module.
Use an IEC60127-approved fuse on the power line and output circuit
to meet voltage and current requirements. Recommended fuse:
Littelfuse 5x20 mm slowblow type 218000 series/Type T.

Failure to follow this precaution can result in death, serious injury,
or equipment damage.
TWD USE 10AE 13

Safety Information
14 TWD USE 10AE

About the Book
At a Glance

Document Scope This is the Software Reference manual for Twido programmable controllers and
consists of the following major parts:

Description of the Twido programming software and an introduction to the
fundamentals needed to program Twido controllers.
Description of communications, managing analog I/O, installing the AS-Interface
bus interface module and other special functions.
Description of the software languages used to create Twido programs.
Description of instructions and functions of Twido controllers.

Validity Note The information in this manual is applicable only for Twido programmable
controllers.

Product Related
Warnings

Schneider Electric assumes no responsibility for any errors that appear in this
document. No part of this document may be reproduced in any form or means,
including electronic, without prior written permission of Schneider Electric.

User Comments We welcome your comments about this document. You can reach us by e-mail at
TECHCOMM@modicon.com
TWD USE 10AE 15

About the Book
16 TWD USE 10AE

TWD USE 10AE
I

Description of Twido Software
At a Glance

Subject of this
Part

This part provides an introduction to the software languages and the basic
information required to create control programs for Twido programmable controllers.

What's in this
Part?

This part contains the following chapters:

Chapter Chapter Name Page

1 Introduction to Twido Software 19

2 Twido Language Objects 25

3 User Memory 51

4 Controller Operating Modes 61

5 Event task management 77
17

Twido Software
18 TWD USE 10AE

TWD USE 10AE
1

Introduction to Twido Software
At a Glance

Subject of this
Chapter

This chapter provides a brief introduction to TwidoSoft, the programming and
configuration software for Twido controllers, and to the List, Ladder, and Grafcet
programming languages.

What's in this
Chapter?

This chapter contains the following topics:

Topic Page

Introduction to TwidoSoft 20

Introduction to Twido Languages 21
19

Twido Software Languages
Introduction to TwidoSoft

Introduction TwidoSoft is a graphical development environment for creating, configuring, and
maintaining applications for Twido programmable controllers. TwidoSoft allows you
to create programs with different types of languages (See Twido Languages, p. 21),
and then transfer the application to run on a controller.

TwidoSoft TwidoSoft is a 32-bit Windows-based program for a personal computer (PC) running
Microsoft Windows 98 Second Edition, Microsoft Windows 2000 Professional or
Microsoft Windows XP operating systems.
The main software features of TwidoSoft:

Standard Windows user interface
Program and configure Twido controllers
Controller communication and control

Minimum
configuration

The minimum configuration for using TwidoSoft is:
Pentium 300MHz,
128 Mb of RAM,
40 Mb of available space on the hard disk.

Note: The Controller-PC link uses the TCP/IP protocol. It is essential for this
protocol to be installed on the PC.
20 TWD USE 10AE

Twido Software Languages
Introduction to Twido Languages

Introduction A programmable controller reads inputs, writes to outputs, and solves logic based
on a control program. Creating a control program for a Twido controller consists of
writing a series of instructions in one of the Twido programming languages.

Twido
Languages

The following languages can be used to create Twido control programs:
Instruction List Language:
An Instruction List program is a series of logical expressions written as a
sequence of Boolean instructions.
Ladder Diagrams:
A Ladder diagram is a graphical means of displaying a logical expression.
Grafcet Language:
Grafcet language is made up of a series of steps and transitions. Twido supports
the use of Grafcet list instructions, but not graphical Grafcet.

You can use a personal computer (PC) to create and edit Twido control programs
using these programming languages.
A List/Ladder reversibility feature allows you to conveniently reverse a program from
Ladder to List and from List to Ladder.

Instruction List
Language

A program written in Instruction List language consists of a series of instructions
executed sequentially by the controller. The following is an example of a List
program.

0 BLK %C8
1 LDF %I0.1
2 R
3 LD %I0.2
4 AND %M0
5 CU
6 OUT_BLK
7 LD D
8 AND %M1
9 ST %Q0.4
10 END_BLK
TWD USE 10AE 21

Twido Software Languages
Ladder Diagrams Ladder diagrams are similar to relay logic diagrams that represent relay control
circuits. Graphic elements such as coils, contacts, and blocks represent instructions.
The following is an example of a Ladder diagram.

N
%I0.1

%I0.2 %M0

%M1 %Q0.4

%C8
R E

S ADJ Y D
%C8.P 777

CU F

CD
22 TWD USE 10AE

Twido Software Languages
Grafcet
Language

The Grafcet analytical method divides any sequential control system into a series of
steps, with which actions, transitions, and conditions are associated. The following
illustration shows examples of Grafcet instructions in List and Ladder programs
respectively.

0
1
2
3
4
5
6
7
8
9
10

-*-
LD
#
#
-*-
LD
#
-*-
LD
#
...

3
%M10
4
5
4
%I0.7
6
5
%M15
7

%M10 4

#

%I0.7 6

#

%M15 7

#

5

#

--*-- 3

--*-- 4

--*-- 5
TWD USE 10AE 23

Twido Software Languages
24 TWD USE 10AE

TWD USE 10AE
2

Twido Language Objects
At a Glance

Subject of this
Chapter

This chapter provides details about the language objects used for programming
Twido controllers.

What's in this
Chapter?

This chapter contains the following topics:

Topic Page

Language Object Validation 26

Bit Objects 27

Word Objects 29

Floating point and double word objects 32

Addressing Bit Objects 36

Addressing Word Objects 37

Addressing floating objects 38

Addressing double word objects 39

Addressing Inputs/Outputs 40

Network Addressing 42

Function Block Objects 43

Structured Objects 45

Indexed objects 48

Symbolizing Objects 50
25

Twido Language Objects
Language Object Validation

Introduction Word and bit objects are valid if they have been allocated memory space in the
controller. To do this, they must be used in the application before downloaded to the
controller.

Example The range of valid objects is from zero to the maximum reference for that object type.
For example, if your application's maximum references for memory words is %MW9,
then %MW0 through %MW9 are allocated space. %MW10 in this example is not
valid and can not be accessed either internally or externally.
26 TWD USE 10AE

Twido Language Objects
Bit Objects

Introduction Bit objects are bit-type software variables that can be used as operands and tested
by Boolean instructions. The following is a list of bit objects:

I/O bits
Internal bits (memory bits)
System bits
Step bits
Bits extracted from words

List of Operand
Bits

The following table lists and describes all of the main bit objects that are used as
operands in Boolean instructions.

Type Description Address or
value

Maximum
number

Write
access (1)

Immediate
values

0 or 1 (False or True) 0 or 1 - -

Inputs
Outputs

These bits are the "logical
images" of the electrical states of
the I/O. They are stored in data
memory and updated during
each scan of the program logic.

%Ix.y.z (2)
%Qx.y.z (2)

Note (4) No
Yes

AS-Interface
Inputs
Outputs

These bits are the "logical
images" of the electrical states of
the I/O. They are stored in data
memory and updated during
each scan of the program logic.

%IAx.y.z
%QAx.y.z

Note (5)
No
Yes

Internal
(Memory)

Internal bits are internal memory
areas used to store intermediary
values while a program is
running.
Note: Unused I/O bits can not be
used as internal bits.

%Mi 128
TWDLC•A10
DRF,
TWDLC•A16
DRF
256 All other
controllers

Yes

System System bits %S0 to %S127
monitor the correct operation of
the controller and the correct
running of the application
program.

%Si 128 According
to i
TWD USE 10AE 27

Twido Language Objects
Legends:
1. Written by the program or by using the Animation Tables Editor.
2. See I/O Addressing.
3. Except for %SBRi.j and %SCi.j, these bits can be read and written.
4. Number is determined by controller model.
5. Where, x = address of the expansion module (0..7); y = AS-Interface address

(0A..31B); z = channel number (0..3). (See Addressing I/Os associated with slave
devices connected to the AS-Interface V2 bus, p. 223.)

Function
blocks

The function block bits
correspond to the outputs of the
function blocks.
These outputs may be either
directly connected or used as an
object.

%TMi.Q,
%Ci.P, and
so on.

Note (4) No (3)

Reversible
function
blocks

Function blocks programmed
using reversible programming
instructions BLK, OUT_BLK, and
END_BLK.

E, D, F, Q,
TH0, TH1

Note (4) No

Word
extracts

One of the 16 bits in some words
can be extracted as operand bits.

Variable Variable Variable

Grafcet
steps

Bits %X1 to %Xi are associated
with Grafcet steps. Step bit Xi is
set to 1 when the corresponding
step is active, and set to 0 when
the step is deactivated.

%X21 62
TWDLC•A10
DRF,
TWDLC•A16
DRF
96
TWDLC•A24
DRF,
TWDLCA•40
DRF and
Modular
controllers

Yes

Type Description Address or
value

Maximum
number

Write
access (1)
28 TWD USE 10AE

Twido Language Objects
Word Objects

Introduction Word objects that are addressed in the form of 16-bit words that are stored in data
memory and can contain an integer value between -32768 and 32767 (except for
the fast counter function block which is between 0 and 65535).
Examples of word objects:

Immediate values
Internal words (%MWi) (memory words)
Constant words (%KWi)
I/O exchange words (%IWi, %QWi%)
AS-Interface analog I/O words (IWAi, %QWAi)
System words (%SWi)
Function blocks (configuration and/or runtime data)

Word Formats The contents of the words or values are stored in user memory in 16-bit binary code
(two's complement) using the following convention:

In signed binary notation, bit 15 is allocated by convention to the sign of the coded
value:

Bit 15 is set to 0: the content of the word is a positive value.
Bit 15 is set to 1: the content of the word is a negative value (negative values are
expressed in two's complement logic).

Words and immediate values can be entered or retrieved in the following format:
Decimal
Min.: -32768, Max.: 32767 (1579, for example)
Hexadecimal
Min.: 16#0000, Max.: 16#FFFF (for example, 16#A536)
Alternate syntax: #A536

F

0

|+

E

1

16
38

4

D

0

81
92

C

1

40
96

B

0

20
48

A

0

10
24

9

1

51
2

8

0

25
6

7

0

12
8

6

1
64

5

0
32

4

0
16

3

1

8

2

1

4

1

0

2

0

1

1

Bit position

Bit state

Bit value
TWD USE 10AE 29

Twido Language Objects
Descriptions of
Word Objects

The following table describes the word objects.

Words Description Address or
value

Maximum
number

Write
access (1)

Immediate
values

These are integer values that are
in the same format as the 16-bit
words, which enables values to
be assigned to these words.

-

No

Base 10 -32768 to
32767

Base 16 16#0000 to
16#FFFF

Internal
(Memory)

Used as "working" words to store
values during operation in data
memory. Words %MW0 to
%MW255 are read or written
directly by the program.

%MWi 3000 Yes

Constants Store constants or alphanumeric
messages. Their content can only
be written or modified by using
TwidoSoft during configuration.
Constant words %KW0 through
%KW63 are read-only by the
program.

%KWi 256 Yes,
only by
using
TwidoSoft

System These 16-bit words have several
functions:

Provide access to data coming
directly from the controller by
reading %SWi words.)
Perform operations on the
application (for example,
adjusting schedule blocks).

%SWi 128 According
to i

Function
blocks

These words correspond to
current parameters or values of
function blocks.

%TM2.P,
%Ci.P, etc.

Yes

Network
exchange
words

Assigned to controllers connected
as Remote Links. These words
are used for communication
between controllers:

Network Input %INWi.j 4 per
remote link

No

Network Output %QNWi.j 4 per
remote link

Yes
30 TWD USE 10AE

Twido Language Objects
Analog I/O
words

Assigned to analog inputs and
outputs of AS-Interface slave
modules.

Analog Inputs %IWAx.y.z Note (3) No

Analog Outputs %QWAx.y.z Note (3) Yes

Extracted
bits

It is possible to extract one of the
16 bits from the following words:

Internal %MWi:Xk 1500 Yes

System %SWi:Xk 128 Depends
on i

Constants %KWi:Xk 64 No

Input %IWi.j:Xk Note (2) No

Output %QWi.j:Xk Note (2) Yes

AS-Interface Slave Input %IWAx.y.z:Xk Note (2) No

AS-Interface Slave Output %QWAx.y.z:X
k

Note (2) Yes

Network Input %INWi.j:Xk Note (2) No

Network Output %QNWi.j:Xk Note (2) Yes

Note:
1. Written by the program or by using the Animation Tables Editor.
2. Number is determined by the configuration.
3. Where, x = address of the expansion module (0..7); y = AS-Interface address

(0A..31B); z = channel number (0..3). (See Addressing I/Os associated with
slave devices connected to the AS-Interface V2 bus, p. 223.)

Words Description Address or
value

Maximum
number

Write
access (1)
TWD USE 10AE 31

Twido Language Objects
Floating point and double word objects

Introduction TwidoSoft allows you to perform operations on floating point and double integer
word objects.
A floating point is a mathematical argument which has a decimal in its expression
(examples: 3.4E+38, 2.3 or 1.0).
A double integer word consists of 4 bytes stored in data memory and containing a
value between -2147483648 and +2147483647.

Floating Point
Format and
Value

The floating format used is the standard IEEE STD 734-1985 (equivalent IEC 559).
The length of the words is 32 bits, which corresponds to the single decimal point
floating numbers.
Table showing the format of a floating point value:

The value as expressed in the above format is determined by the following equation:

32-bit Floating Value = * * 1.Fractional part
Floating values can be represented with or without an exponent; but they must
always have a decimal point (floating point).
Floating values range from -3.402824e+38 and -1.175494e-38 to 1.175494e-38 and
3.402824e+38 (grayed out values on the diagram). They also have the value 0,
written 0.0
.

When a calculation result is:
Less than -3.402824e+38, the symbol -1.#INF (for -infinite) is displayed,
Greater than +3.402824e+38, the symbol 1.#INF (for +infinite) is displayed,
Between -1.175494e-38 and 1.175494e-38, it is rounded off to 0.0. A value within
these limits cannot be entered as a floating value.
Indefinite (for example the square root of a negative number) the symbol 1.#NAN
or -1.#NAN is displayed.

Representation precision is 2-24. To display floating point numbers, it is
unnecessary to display more than 6 digits after the decimal point.

Bit 31 Bits {30...23} Bits {22...0}

S Exponent Fractional part

1–()S 2 Exposant 127–()

-1.#INF -1.#DN 1.#DN 1.#INF

-3.402824e+38 -1.175494e-38 +1.175494e-38 +3.402824e+380
32 TWD USE 10AE

Twido Language Objects
Limit range of
Arithmetic
Functions on
Floating Point

The following table describes the limit range of arithmetic functions on floating point
objects

Hardware
compatibility

 Floating point and double word operations are not supported by all Twido
controllers.
The following table shows hardware compatibility:

Note:
the value "1285" is interpreted as a whole value; in order for it to be recognized
as a floating point value, it must be written thus: "1285.0"

Arithmetic Funtion Limit range and invalid operations

Type Syntax #QNAN (Invalid) #INF (Infinite)

Square root of an
operand

SQRT(x) x < 0 x > 1.7E38

Power of an integer
by a real
EXPT(%MF,%MW)

EXPT(y, x)
(where:
x^y = %MW^%MF)

x < 0 y.ln(x) > 88

Base 10 logarithm LOG(x) x <= 0 x > 2.4E38

Natural logarithm LN(x) x <= 0 x > 1.65E38

Natural exponential EXP(x) x < 0 x > 88.0

Twido controller Double words
supported

Floating
points
supported

TWDLMDA40DUK Yes Yes

TWDLMDA40DTK Yes Yes

TWDLMDA20DUK Yes No

TWDLMDA20DTK Yes No

TWDLMDA20DRT Yes Yes

TWDLCA•40DRF Yes Yes

TWDLC•A24DRF Yes No

TWDLC•A16DRF Yes No

TWDLC•A10DRF No No
TWD USE 10AE 33

Twido Language Objects
Validity Check When the result is not within the valid range, the system bit %S18 is set to 1.
The status word %SW17 bits indicate the cause of an error in a floating operation:
Different bits of the word %SW17:

This word is reset to 0 by the system on cold start, and also by the program for re-
usage purposes.

Description of
Floating Point
and Double Word
Objects

The following table describes floating point and double word objects:

%SW17:X0 Invalid operation, result is not a number (1.#NAN or -1.#NAN)

%SW17:X1 Reserved

%SW17:X2 Divided by 0, result is infinite (-1.#INF or 1.#INF)

%SW17:X3 Result greater in absolute value than +3.402824e+38, result is infinite (-1.#INF
or 1.#INF)

%SW17:X4
to X15

Reserved

Type of object Description Address Maximum
number

Write access Indexed form

Immediate values Integers or decimal
numbers with identical
format to 32 bit objects.

- [-] No -

Internal floating point Objects used to store values
during operation in data
memory.

%MFi 1500 Yes %MFi[index]

Internal double word %MDi 1500 Yes %MDi[index]

Floating constant
value

Used to store constants. %KFi 128 Yes, only using
TwidoSoft

%KFi[index]

Double constant %KDi 128 Yes, only using
TwidoSoft

%KDi[index]
34 TWD USE 10AE

Twido Language Objects
Possibility of
Overlap between
Objects

Single, double length and floating words are stored in the data space in one memory
zone. Thus, the floating word %MFi and the double word %MDi correspond to the
single length words %MWi and %MWi+1 (the word %MWi containing the least
significant bits and the word %MWi+1 the most significant bits of the word %MFi).
The following table shows how floating and double internal words overlap:

The following table shows how floating and double constants overlap:

Example:
%MF0 corresponds to %MW0 and %MW1. %KF543 corresponds to %KW543 and
%KW544.

Floating
and
Double

Odd
address

Internal
words

%MF0 /
%MD0

%MW0

%MF1 /
%MD1

%MW1

%MF2 /
%MD2

%MW2

%MF3 /
%MD3

%MW3

%MF4 /
%MD4

%MW4

... %MW5

... ...

%MFi /
%MDi

%MWi

%MFi+1 /
%MDi+1

%MWi+1

Floating
and
Double

Odd
address

Internal
words

%KF0 /
%KD0

%KW0

%KF1 /
%KD1

%KW1

%KF2 /
%KD2

%KW2

%KF3 /
%KD3

%KW3

%KF4 /
%KD4

%KW4

... %KW5

... ...

%kFi /
%kDi

%KWi

%KFi+1 /
%KDi+1

%KWi+1
TWD USE 10AE 35

Twido Language Objects
Addressing Bit Objects

Syntax Use the following format to address internal, system, and step bit objects:

Description The following table describes the elements in the addressing format.

Examples of bit object addressing:
%M25 = internal bit number 25
%S20 = system bit number 20
%X6 = step bit number 6

Bit Objects
Extracted from
Words

TwidoSoft is used to extract one of the 16 bits from words. The address of the word
is then completed by the bit row extracted according to the following syntax:

Examples:
%MW5:X6 = bit number 6 of internal word %MW5
%QW5.1:X10 = bit number 10 of output word %QW5.1

% M, S, or X i

Symbol Object type Number

Group Item Description

Symbol % The percent symbol always precedes a software variable.

Type of
object

M Internal bits store intermediary values while a program is
running.

S System bits provide status and control information for the
controller.

X Step bits provide status of step activities.

Number i The maximum number value depends on the number of objects
configured.

WORD : X k

Position k = 0 - 15 bit
rank in the word address.

Word address
36 TWD USE 10AE

Twido Language Objects
Addressing Word Objects

Introduction Addressing word objects, except for input/output addressing (see Addressing
Inputs/Outputs, p. 40) and function blocks (see Function Block Objects, p. 43),
follows the format described below.

Syntax Use the following format to address internal, constant and system words:

Description The following table describes the elements in the addressing format.

Examples of word object addressing:
%MW15 = internal word number 15
%KW26 = constant word number 26
%SW30 = system word number 30

% M, K or S W i

Symbol Object type Format Number

Group Item Description

Symbol % The percent symbol always precedes an internal
address.

Type of object M Internal words store intermediary values while a
program is running.

K Constant words store constant values or alphanumeric
messages. Their content can only be written or modified
by using TwidoSoft.

S System words provide status and control information for
the controller.

Syntax W 16-bit word.

Number i The maximum number value depends on the number of
objects configured.
TWD USE 10AE 37

Twido Language Objects
Addressing floating objects

Introduction Addressing floating objects, except for input/output addressing (see Addressing
Inputs/Outputs, p. 40) and function blocks (see Function Block Objects, p. 43),
follows the format described below.

Syntax Use the following format to address internal and constant floating objects:

Description The following table describes the elements in the addressing format.

Examples of floating object addresses:
%MF15 = internal floating object number 15
%KF26 = constant floating object number 26

Symbol Syntax

% M or K F

Type of object Number

i

Group Item Description

Symbol % The percent symbol always precedes an internal
address.

Type of object M Internal floating objects store intermediary values while
a program is running.

K Floating constants are used to store constant values.
Their content can only be written or modified by using
TwidoSoft.

Syntax F 32 bit object.

Number i The maximum number value depends on the number of
objects configured.
38 TWD USE 10AE

Twido Language Objects
Addressing double word objects

Introduction Addressing double word objects, except for input/output addressing (see
Addressing Inputs/Outputs, p. 40) and function blocks (see Function Block Objects,
p. 43), follows the format described below.

Syntax Use the following format to address internal and constant double words:

Description The following table describes the elements in the addressing format.

Examples of double word object addressing:
%MD15 = internal double word number 15
%KD26 = constant double word number 26

Symbol Syntax

% M or K D

Type of object Number

i

Group Item Description

Symbol % The percent symbol always precedes an internal
address.

Type of object M Internal double words are used to store intermediary
values while a program is running.

K Constant double words store constant values or
alphanumeric messages. Their content can only be
written or modified by using TwidoSoft.

Syntax D 32 bit double word.

Number i The maximum number value depends on the number of
objects configured.
TWD USE 10AE 39

Twido Language Objects
Addressing Inputs/Outputs

Introduction Each input/output (I/O) point in a Twido configuration has a unique address: For
example, the address "%I0.0.4" is assigned to input 4 of a controller.
I/O addresses can be assigned for the following hardware:

Controller configured as Remote Link Master
Controller configured as Remote I/O
Expansion I/O modules

The TWDNOI10M3 AS-Interface bus interface module has a special address
system for the I/Os of its slave devices (See Addressing I/Os associated with slave
devices connected to the AS-Interface V2 bus, p. 223).

Multiple
References to an
Output or Coil

In a program, you can have multiple references to a single output or coil. Only the
result of the last one solved is updated on the hardware outputs. For example,
%Q0.0.0 can be used more than once in a program, and there will not be a warning
for multiple occurrences. So it is important to confirm only the equation that will give
the required status of the output.

Format Use the following format to address inputs/outputs.

Use the following format to address inputs/output exchange words.

CAUTION
Unintended Operation
No duplicate output checking or warnings are provided. Review the use
of the outputs or coils before making changes to them in your
application.

Failure to follow this precaution can result in injury or equipment
damage.

% I, Q x z
Symbol Object type Controller

position
Channel number

.
point

.
point

y
I/O type

% I, Q W y
Symbol Object type Format I/O Type

.
point

x
Controller
position
40 TWD USE 10AE

Twido Language Objects
Description The table below describes the I/O addressing format.

Examples The table below shows some examples of I/O addressing.

Group Item Value Description

Symbol % - The percent symbol always precedes an internal
address.

Object type I - Input. The "logical image" of the electrical state of
a controller or expansion I/O module input.

Q - Output. The "logical image" of the electrical state
of a controller or expansion I/O module output.

Controller
position

x 0
1 - 7

Master controller (Remote Link master).
Remote controller (Remote Link slave).

I/O Type y 0
1 - 7

Base I/O (local I/O on controller).
Expansion I/O modules.

Channel
Number

z 0 - 31 I/O channel number on controller or expansion I/
O module. Number of available I/O points
depends on controller model or type of
expansion I/O module.

I/O object Description

%I0.0.5 Input point number 5 on the base controller (local I/O).

%Q0.3.4 Output point number 4 on the expansion I/O module at address 3 for
the controller base (expansion I/O).

%I0.0.3 Input point number 3 on base controller.

%I3.0.1 Input point number 1 on remote I/O controller at address 3 of the
remote link.

%I0.3.2 Input point number 2 on the expansion I/O module at address 3 for
the controller base.
TWD USE 10AE 41

Twido Language Objects
Network Addressing

Introduction Application data is exchanged between peer controllers and the master controller on
a Twido Remote Link network by using the network words %INW and %QNW. See
Communications , p. 85 for more details.

Format Use the following format for network addressing.

Description of
Format

The table below describes the network addressing format.

Examples The table below shows some examples of networking addressing.

% IN,QN W x j
Symbol Object type Format Controller

position
Word

.
point

Group Element Value Description

Symbol % - The percent symbol always precedes an internal
address.

Object type IN - Network input word. Data transfer from master to
peer.

QN - Network output word. Data transfer from peer to
master.

Format W - A16-bit word.

Controller
position

x 0
1 - 7

Master controller (Remote Link master).
Remote controller (Remote Link slave).

Word j 0 - 3 Each peer controller uses from one to four words
to exchange data with the master controller.

Network object Description

%INW3.1 Network word number 1 of remote controller number 3.

%QNW0.3 Network word number 3 of the base controller.
42 TWD USE 10AE

Twido Language Objects
Function Block Objects

Introduction Function blocks provide bit objects and specific words that can be accessed by the
program.

Example of a
Function Block

The following illustration shows a counter function block.

Bit Objects Bit objects correspond to the block outputs. These bits can be accessed by Boolean
test instructions using either of the following methods:

Directly (for example, LD E) if they are wired to the block in reversible
programming (see Standard function blocks programming principles, p. 319).
By specifying the block type (for example, LD %Ci.E).

Inputs can be accessed in the form of instructions.

Word Objects Word objects correspond to specified parameters and values as follows:
Block configuration parameters: some parameters are accessible by the program
(for example, pre-selection parameters), and some are inaccessible by the
program (for example, time base).
Current values: for example, %Ci.V, the current count value.

Up/down counter block

R E

S D

CD F

CU

%Ci

ADJ Y
%Ci.P 9999
TWD USE 10AE 43

Twido Language Objects
Word Objects Double word objects increase the computational capability of your Twido controller
while executing system functions, such as fast counters (%FC), very fast counters
(%VFC) and pulse generators (%PLS).
Addressing of 32-bit double word objects used with function blocks simply consists
in appending the original syntax of the standard word objects with the "D" character.
The following example, shows how to address the current value of a fast counter in
standard format and in double word format:

%FCi.V is current value of the fast counter in standard format.
%FCi.VD is the current value of the fast counter in double word format.

Objects
Accessible by
the Program

See the following appropriate sections for a list of objects that are accessible by the
program.

For Basic Function Blocks, see Basic Function Blocks, p. 317.
For Advanced Function Blocks, see Bit and Word Objects Associated with
Advanced Function Blocks, p. 370.

Note: Double word objects are not supported by all Twido controllers. Refer to
Hardware compatibility, p. 33 to find out if your Twido controller can accommodate
double words.
44 TWD USE 10AE

Twido Language Objects
Structured Objects

Introduction Structured objects are combinations of adjacent objects. Twido supports the
following types of structured objects:

Bit Strings
Tables of words
Tables of double words
Tables of floating words

Bit Strings Bit strings are a series of adjacent object bits of the same type and of a defined
length (L).
Example:Bit string %M8:6

Bit strings can be used with the Assignment instruction (see Assignment
Instructions, p. 342).

Note: %M8:6 is acceptable (8 is a multiple of 8), while %M10:16 is unacceptable
(10 is not a multiple of 8).

%M8 %M9 %M10 %M11 %M12 %M13
TWD USE 10AE 45

Twido Language Objects
Available Types
of Bits

Available types of bits for bit strings:

Key:
1. Only I/O bits 0 to 16 can be read in bit string. For controllers with 24 inputs and
32 I/O modules, bits over 16 cannot be read in bit string.
2. Maximum of i+L for TWWDLCAA10DRF and TWDLCAA16DRF is 62
3. Maximum of i+L for TWWDLCAA10DRF and TWDLCAA16DRF is 128

Tables of words Word tables are a series of adjacent words of the same type and of a defined length
(L).
Example:Word table %KW10:7

Word tables can be used with the Assignment instruction (see Assignment
Instructions, p. 342).

Available Types
of Words

Available types of words for word tables:

Type Address Maximum size Write access

Discrete input bits %I0.0:L or %I1.0:L (1) 0<L<17 No

Discrete output bits %Q0.0:L or %Q1.0:L (1) 0<L<17 Yes

System bits %Si:L
with i multiple of 8

0<L<17 and i+L≤ 128 Depending on i

Grafcet Step bits %Xi:L
with i multiple of 8

0<L<17 and i+L≤ 95
(2)

Yes (by program)

Internal bits %Mi:L
with i multiple of 8

0<L<17 and i+L≤ 256
(3)

Yes

%KW10

%KW16

16 bits

Type Address Maximum size Write access

Internal words %MWi:L 0<L<256 and i+L< 3000 Yes

Constant words %KWi:L 0<L<256 and i+L< 256 No

System Words %SWi:L 0<L and i+L<128 Depending on i
46 TWD USE 10AE

Twido Language Objects
Tables of double
words

Double word tables are a series of adjacent words of the same type and of a defined
length (L).
Example:Double word table %KD10:7

Double word tables can be used with the Assignment instruction (see Assignment
Instructions, p. 342).

Available Types
of Double Words

Available types of words for double word tables:

Tables of floating
words

Floating word tables are a series of adjacent words of the same type and of a defined
length (L).
Example: Floating point table %KF10:7

Floating point tables can be used with the Assignment instruction (see Advanced
instructions).

Types of Floating
Words Available

Available types of words for floating word tables:

%KD10

%KD22

32 Bit

Type Address Maximum size Write access

Internal words %MDi:L 0<L<256 and i+L< 3000 Yes

Constant words %KDi:L 0<L and i+L< 256 No

%KF10

%KF22

32 Bit

Type Address Maximum size Write access

Internal words %MFi:L 0<L<256 and i+L< 3000 Yes

Constant words %KFi:L 0<L and i+L<256 No
TWD USE 10AE 47

Twido Language Objects
Indexed objects

Introduction An indexed word is a single or double word or floating point with an indexed object
address. There are two types of object addressing:

Direct addressing
Indexed addressing

Direct
Addressing

A direct address of an object is set and defined when a program is written.
Example: %M26 is an internal bit with the direct address 26.

Indexed
Addressing

An indexed address of an object provides a method of modifying the address of an
object by adding an index to the direct address of an object. The content of the index
is added to the object’s direct address. The index is defined by an internal word
%MWi. The number of "index words" is unlimited.
Example: %MW108[%MW2] is a word with an address consisting of the direct
address 108 plus the contents of word %MW2.
If word %MW2 has a value of 12, writing to %MW108[%MW2] is equivalent to writing
to %MW120 (108 plus 12).

Objects
Available for
Indexed
Addressing

The following are the available types of objects for indexed addressing.

Indexed objects can be used with the assignment instructions (see Assignment
Instructions, p. 342 for single and double words) and in comparison instructions (see
Comparison Instructions, p. 347 for single and double words). This type of
addressing enables series of objects of the same type (such as internal words and
constants) to be scanned in succession, by modifying the content of the index object
via the program.

Type Address Maximum size Write access

Internal words %MWi[MWj] 0≤ i+%MWj<3000 Yes

Constant words %KWi[%MWj] 0≤ i+%MWj<256 No

Internal double words %MDi[MWj] 0≤ i+%MWj<2999 Yes

Double constant
words

%KDi[%MWj] 0≤ i+%MWj<255 No

Internal floating
points

%MFi[MWj] 0≤ i+%MWj<2999 Yes

Constant floating
points

%KFi[%MWj] 0≤ i+%MWj<255 No
48 TWD USE 10AE

Twido Language Objects
Index Overflow
system bit %S20

An overflow of the index occurs when the address of an indexed object exceeds the
limits of the memory zone containing the same type of object. In summary:

The object address plus the content of the index is less than 0.
The object address plus the content of the index is greater than the largest word
directly referenced in the application. The maximum number is 2999 (for words
%MWi) or 255 (for words %KWi).

In the event of an index overflow, the system sets system bit %S20 to 1 and the
object is assigned an index value of 0.

Note: The user is responsible for monitoring any overflow. Bit %S20 must be read
by the user program for possible processing. The user must confirm that it is reset
to 0.
%S20 (initial status = 0):

On index overflow: set to 1 by the system.
Acknowledgment of overflow: set to 0 by the user, after modifying the index.
TWD USE 10AE 49

Twido Language Objects
Symbolizing Objects

Introduction You can use Symbols to address Twido software language objects by name or
customized mnemonics. Using symbols allows for quick examination and analysis
of program logic, and greatly simplifies the development and testing of an
application.

Example For example, WASH_END is a symbol that could be used to identify a timer function
block that represents the end of a wash cycle. Recalling the purpose of this name
should be easier than trying to remember the role of a program address such as
%TM3.

Guidelines for
Defining
Symbols

The following are guidelines for defining symbols:
A maximum of 32 characters.
Letters (A-Z), numbers (0 -9), or underscores (_).
First character must be an alphabetical or accented character. You can not use
the percentile sign (%).
Do not use spaces or special characters.
Not case-sensitive. For example, Pump1 and PUMP1 are the same symbol and
can only be used once in an application.

Editing Symbols Symbols are defined and associated with language objects in the Symbol Editor.
Symbols and their comments are stored with the application on the PC hard drive,
but are not stored on the controller. Therefore, they can not be transferred with the
application to the controller.
50 TWD USE 10AE

TWD USE 10AE
3

User Memory
At a Glance

Subject of this
Chapter

This chapter describes the structure and usage of Twido user memory.

What's in this
Chapter?

This chapter contains the following topics:

Topic Page

User Memory Structure 52

Backup and Restore without Backup Cartridge or Extended Memory 54

Backup and Restore with a 32K Backup Cartridge 56

Using the 64K Extended Memory Cartridge 59
51

User Memory
User Memory Structure

Introduction The controller memory accessible to your application is divided into two distinct sets:
Bit values
Word values (16-bit signed values) and double word values (32-bit signed values)

Bit Memory The bit memory is located in the controller's built-in RAM. It contains the map of 128
bit objects.

Word Memory The word memory (16 bits) supports:
Dynamic words: runtime memory (stored in RAM only).
Memory words (%MW) and double words (%MD): dynamic system data and
system data.
Program: descriptors and executable code for tasks.
Configuration data: constant words, initial values, and input/output
configuration.

Memory Storage
Types

The following are the different types of memory storage for Twido controllers.
Random Access Memory.
Internal volatile memory: Contains dynamic words, memory words, program and
configuration data.
EEPROM
An integrated 32KB EEPROM that provides internal program and data backup.
Protects program from corruption due to battery failure or a power outage lasting
longer than 30 days. Contains program and configuration data. Holds a maximum
of 512 memory words. Program is not backed up here If a 64K extended memory
cartridge is being used and Twido has been configured to accept the 64K
extended memory cartridge.
Erase 32K backup cartridge
An optional external cartridge used to save a program and transfer that program
to other Twido controllers. Can be used to update the program in controller RAM.
Contains program and constants, but no memory words.
64K extended memory cartridge
An optional external cartridge that stores a program up to 64K. Must remain
plugged into the controller as long as that program is being used.
52 TWD USE 10AE

User Memory
Saving Memory Your controller’s program and memory words can be saved in the following:
RAM (for up to 30 days with good battery)
EEPROM (maximum of 32 KB)

Transferring the program from the EEPROM memory to the RAM memory is done
automatically when the program is lost in RAM (or if there is no battery).
Manual transfer can also be performed using TwidoSoft.

Memory
Configurations

The following tables describe the types of memory configurations possible with
Twido compact and modulare controllers.

(*) Mem 1 and Mem 2 in memory usage.
(**) in this case the 64KB cartridge must be installed on the Twido and declared in
the configuration, if it has not already been declared,
(***) reserved for backup of the first 512 %MW words or the first 256 %MD double
words.

Memory Type
Compact Controllers

10DRF 16DRF 24DRF 40DRF
(32k)

40DRF**
(64k)

Internal RAM
Mem 1*

10KB 10KB 10KB 10KB 10KB

External RAM
Mem 2*

16KB 32KB 32KB 64KB

Internal EEPROM 8KB 16KB 32KB 32KB 32KB***

External EEPROM 32KB 32KB 32KB 32KB 64KB

Maximum program size 8KB 16KB 32KB 32KB 64KB

Maximum external backup 8KB 16KB 32KB 32KB 64KB

Memory Type
Modular Controllers

20DUK
20DTK

20DRT
40DUK
40DTK (32k)

20DRT
40DUK
40DTK** (64k)

Internal RAM
Mem 1*

10KB 10KB 10KB

External RAM
Mem 2*

32KB 32KB 64KB

Internal EEPROM 32KB 32KB 32KB***

External EEPROM 32KB 32KB 64KB

Maximum program size 32KB 32KB 64KB

Maximum external backup 32KB 32KB 64KB
TWD USE 10AE 53

User Memory
Backup and Restore without Backup Cartridge or Extended Memory

Introduction The following information details backup and restore memory functions in modular
and compact controllers without a backup cartridge or extended memory plugged in.

At a Glance Twido programs, memory words and configuration data can be backed up using the
controllers internal EEPROM. Because saving a program to the internal EEPROM
clears any previously backed up memory words, the program must be backed up
first, then the configured memory words. Dynamic data can be stored in memory
words then backed up to the EEPROM. If there is no program saved to the internal
EEPROM you cannot save memory words to it.

Memory
Structure

Here is a diagram of a controller’s memory structure. The arrows show what can be
backed up to the EEPROM from RAM:

Program Backup Here are the steps for backing up your program into EEPROM.

Program

Configuration data

%MWs

Dynamic words

Program

Configuration data

%MWs

RAM

EEPROM

Step Action

1 The following must be true:
There is a valid program in RAM.

2 From the Twido software window bring down the menu under ‘Controller’, scroll
down to ‘Backup’ and click on it.
54 TWD USE 10AE

User Memory
Program Restore During power up there is one way the program will be restored to RAM from the
EEPROM (assuming there is no cartridge or extended memory in place):

The RAM program is not valid
To restore a program manually from EEPROM do the following:

From the Twido software window bring down the menu under ‘Controller’, scroll
down to ‘Restore’ and click on it.

Data (%MWs)
Backup

Here are the steps for backing up data (memory words) into the EEPROM:

Data (%MWs)
Restore

Restore %MWs manually by setting system bit %S95 to 1.
For this to work the following must be true:

A valid backup application is present in the EEPROM
The application in RAM matches the backup application in EEPROM
The backup memory words are valid

Step Action

1 For this to work the following must be true:
A valid program in RAM (%SW96:X6=1).
The same valid program already backed up into the EEPROM.
Memory words configured in the program.

2 Set %SW97 to the length of the memory words to be saved.
Note: Length cannot exceed the configured memory word length, and it must be
greater than 0 but not greater than 512.

3 Set %SW96:X0 to 1.
TWD USE 10AE 55

User Memory
Backup and Restore with a 32K Backup Cartridge

Introduction The following information details backup and restore memory functions in modular
and compact controllers using a 32K backup cartridge.

At a Glance The backup cartridge is used to save a program and transfer that program to other
Twido controllers. It should be removed from a controller and set aside once the
program has been installed or saved. Only program and configuration data can be
saved to the cartridge (%MWs cannot be saved to the 32K backup cartridge).
Dynamic data can be stored in memory words then backed up to the EEPROM.
When program installation is complete any %MWs that were backed up to the
internal EEPROM prior to installation will be lost.

Memory
Structure

Here is a diagram of a controller’s memory structure with the backup cartridge
attached. The arrows show what can be backed up to the EEPROM and cartridge
from RAM:

Program

Configuration data

%MWs

Dynamic words

Program

Configuration data

%MWs

Program

Configuration data

RAM

EEPROM

Backup
cartridge
56 TWD USE 10AE

User Memory
Program Backup Here are the steps for backing up your program into the backup cartridge:

Program Restore To load a program saved on a backup cartridge into a controller do the following:

Data (%MWs)
Backup

Here are the steps for backing up data (memory words) into the EEPROM:

Step Action

1 Power down the controller.

2 Plug in the backup cartridge.

3 Powerup the controller.

4 From the Twido software window bring down the menu under ‘Controller’, scroll
down to ‘Backup’ and click on it.

5 Power down the controller.

6 Remove backup cartridge from controller.

Step Action

1 Power down the controller.

2 Plug in the backup cartridge.

3 Powerup the controller.
 (If Auto Start is configured you must power cycle again to get to run mode.)

4 Power down the controller.

5 Remove backup cartridge from controller.

Step Action

1 For this to work the following must be true:
A valid program in RAM.
The same valid program already backed up into the EEPROM.
Memory words configured in the program.

2 Set %SW97 to the length of the memory words to be saved.
Note Length cannot exceed the configured memory word length, and it must be
greater than 0 but not greater than 512.

3 Set %SW96:X0 to 1.
TWD USE 10AE 57

User Memory
Data (%MWs)
Restore

Restore %MWs manually by setting system bit %S95 to 1.
For this to work the following must be true:

A valid backup application is present in the EEPROM
The application in RAM matches the backup application in EEPROM
The backup memory words are valid
58 TWD USE 10AE

User Memory
Using the 64K Extended Memory Cartridge

Introduction The following information details using the memory functions in modular controllers
using a 64K extended memory cartridge.

At a Glance The 64K extended memory cartridge is used to extend the program memory
capability of your Twido controller from 32K to 64K. It must remain plugged into the
controller as long as the extended program is being used. If the cartridge is removed
the controller will enter the stopped state. Memory words are still backed up into the
EEPROM in the controller. Dynamic data can be stored in memory words then
backed up to the EEPROM. The 64K extended memory cartridge has the same
power up behavior as the 32K backup cartridge.

Memory
Structure

Here is a diagram of a controller’s memory structure using an extended memory
cartridge. The arrows show what is backed up into the EEPROM and the 64K
extended memory cartridge from RAM:

Program (1st)

Configuration data

%MWs

Dynamic words

%MWs

Program (2nd)

RAM

EEPROM

Extended

cartridge
memory
TWD USE 10AE 59

User Memory
Configure
Software and
Install Extended
Memory

Before you begin writing your extended program, you must install the 64K extended
memory cartridge into your controller. The following four steps show you how:

Save your
program.

Once your 64K extended memory cartridge has been installed and your program
written:

From the Twido software window bring down the menu under ‘Controller’, scroll
down to ‘Backup’ and click on it.

Data (%MWs)
Backup

Here are the steps for backing up data (memory words) into the EEPROM:

Data (%MWs)
Restore

Restore %MWs manually by setting system bit %S95 to 1.
For this to work the following must be true:

A valid program is present
The backup memory words are valid

Step Action

1 Under the Hardware option menu on you Twido software window enter
‘TWDXCPMFK64’.

2 Power down the controller.

3 Plug in the 64K extended memory cartridge.

4 Powerup the controller.

Step Action

1 For this to work the following must be true:
A valid program is present
Memory words are configured in the program.

2 Set %SW97 to the length of the memory words to be saved.
Note: Length cannot exceed the configured memory word length, and it must be
greater than 0 but not greater than 512.

3 Set %SW96:X0 to 1.
60 TWD USE 10AE

TWD USE 10AE
4

Controller Operating Modes
At a Glance

Subject of this
Chapter

This chapter describes controller operating modes and cyclic and periodic program
execution. Included are details about power outages and restoration.

What's in this
Chapter?

This chapter contains the following topics:

Topic Page

Cyclic Scan 62

Periodic Scan 64

Checking Scan Time 67

Operating Modes 68

Dealing with Power Cuts and Power Restoration 70

Dealing with a warm restart 72

Dealing with a cold start 74

Initialization of objects 76
61

Controller Operating Modes
Cyclic Scan

Introduction Cyclic scanning involves linking controller cycles together one after the other. After
having effected the output update (third phase of the task cycle), the system
executes a certain number of its own tasks and immediately triggers another task
cycle.

Operation The following drawing shows the running phases of the cyclical scan time.

Description of
the phases of a
cycle

The following table describes the phases of a cycle.

Note: The scan time of the user program is monitored by the controller watchdog
timer and must not exceed 500 ms. Otherwise a fault appears causing the
controller to stop immediately in Halt mode. Outputs in this mode are forced to their
default fallback state.

Processing the
program

Processing
 the program

I.P. %I %Q I.P. %I %Q

Scan n time Scan n+1 time

Address Phase Description

I.P. Internal
processing

The system implicitly monitors the controller (managing system
bits and words, updating current timer values, updating status
lights, detecting RUN/STOP switches, etc.) and processes
requests from TwidoSoft (modifications and animation).

%I, %IW Acquisition of
input

Writing to the memory the status of discrete and application
specific module inputs.

- Program
processing

Running the application program written by the user.

%Q,
%QW

Updating of
output

Writing output bits or words associated with discrete and
application specific modules.
62 TWD USE 10AE

Controller Operating Modes
Operating mode Controller in RUN, the processor carries out:
Internal processing
Acquisition of input
Processing the application program
Updating of output

Controller in STOP, the processor carries out:
Internal processing
Acquisition of input

Illustration The following illustration shows the operating cycles.

Check Cycle The check cycle is performed by watchdog.

Internal Processing

Acquiring Inputs

Updating Outputs

Processing Program

RUN STOP
TWD USE 10AE 63

Controller Operating Modes
Periodic Scan

Introduction In this operating mode, acquiring inputs, processing the application program, and
updating outputs are done periodically according to the time defined at configuration
(from 2-150 ms).
At the beginning of the controller scan, a timer, the value of which is initialized at the
period defined at configuration, starts to count down. The controller scan must end
before the timer has finished and relaunches a new scan.

Operation The following drawing shows the running phases of the periodic scan time.

Description of
Operating
Phases

The table below describes the operating phases.

Scan n time Scan n+1 time

Processing the
program

Waiting
period

I.P.%Q I.P.%Q

Processing the
program

Waiting
period

%I %I

Period

Address Phase Description

I.P. Internal
processing

The system implicitly monitors the controller (managing system
bits and words, updating current timer values, updating status
lights, detecting RUN/STOP switches, etc.) and processes
requests from TwidoSoft (modifications and animation).

%I, %IW Acquisition of
input

Writing to the memory the status of discrete and application
specific module inputs.

- Program
processing

Running the application program written by the user.

%Q,
%QW

Updating of
output

Writing output bits or words associated with discrete and
application specific modules.
64 TWD USE 10AE

Controller Operating Modes
Operating mode Controller in RUN, the processor carries out:
Internal processing
Acquisition of input
Processing the application program
Updating of output

If the period has not finished, the processor completes its operating cycle until the
end of the internal processing period. If the operating time is longer than that
allocated to the period, the controller indicates that the period has been exceeded
by setting the system bit %S19 to 1. The process continues and is run completely.
However, it must not exceed the watchdog time limit. The following scan is linked in
after writing the outputs of the scan in progress implicitly.
Controller in STOP, the processor carries out:

Internal processing
Acquisition of input
TWD USE 10AE 65

Controller Operating Modes
Illustration The following illustration shows the operating cycles.

Check Cycle Two checks are carried out:
Period overflow
Watchdog

Internal processing

Acquiring inputs

Updating outputs

Program processing

RUN STOP

Internal processing

Starting the
period

End of period
66 TWD USE 10AE

Controller Operating Modes
Checking Scan Time

General The task cycle is monitored by a watchdog timer called Tmax (a maximal duration
of the task cycle). It permits the showing of application errors (infinite loops, and so
on.) and assures a maximal duration for output refreshing.

Software
WatchDog
(Periodic or
Cyclic
Operation)

In periodic or cyclic operation, the triggering of the watchdog causes a software
error. The application passes into a HALT state and sets system bit %S11 to 1. The
relaunching of the task necessitates a connection to Twido Soft in order to analyze
the cause of the error, modification of the application to correct the error, then reset
the program to RUN.

Check on
Periodic
Operation

In periodic operation an additional check is used to detect the period being
exceeded:

%S19 indicates that the period has been exceeded. It is set to:
1 by the system when the scan time is greater that the task period,
0 by the user.

%SW0 contains the period value (0-150 ms). It is:
Initialized when starting from a cold start by the value selected on the
configuration,
Able to be modified by the user.

Using Master
Task Running
Time

The following system words are used for information on the controller scan cycle
time:

%SW11 initializes to the maximum watchdog time (10 to 500 ms).
%SW30 contains the execution time for the last controller scan cycle.
%SW31 contains the execution time for the longest controller scan cycle since
the last cold start.
%SW32 contains the execution time for the shortest controller scan cycle since
the last cold start.

Note: The HALT state is when the application is stopped immediately because of
an application software error such as a scan overrun. The data retains the current
values, which allows for an analysis of the cause of the error. The program stops
on the instruction in progress. Communication with the controller is open.

Note: This different information can also be accessed from the configuration editor.
TWD USE 10AE 67

Controller Operating Modes
Operating Modes

Introduction Twido Soft is used to take into account the three main operating mode groups:
Checking
Running or production
Stopping

Starting through
Grafcet

These different operating modes can be obtained either starting from or using the
following Grafcet methods:

Grafcet initialization
Presetting of steps
Maintaining a situation
Freezing charts

Preliminary processing and use of system bits ensure effective operating mode
management without complicating and overburdening the user program.
68 TWD USE 10AE

Controller Operating Modes
Grafcet System
Bits

Use of bits %S21, %S22 and %S23 is reserved for preliminary processing only.
These bits are automatically reset by the system. They must be written by Set
Instruction S only.
The following table provides Grafcet-related system bits:

Bit Function Description

%S21 GRAFCET initialization Normally set to 0, it is set to 1 by:
a cold-start, %S0=1;
The user, in the pre-processing program part only,
using a Set Instruction S %S21 or a set coil -(S)-
%S21.

Consequences:
Deactivation of all active steps.
Activation of all initial steps.

%S22 GRAFCET RESET Normally set to 0, it can only be set to 1 by the program
in pre-processing.
Consequences:

Deactivation of all active steps.
Scanning of sequential processing stopped.

%S23 Preset and freeze
GRAFCET

Normally set to 0, it can only be set to 1 by the program
in pre-processing.

Prepositioning by setting %S22 to 1.
Preposition the steps to be activated by a series of S
Xi instructions.
Enable prepositioning by setting %S23 to 1.

Freezing a situation:
In initial situation: by maintaining %S21 at 1 by
program.
In an "empty" situation: by maintaining %S22 at 1 by
program.
In a situation determined by maintaining %S23 at 1.
TWD USE 10AE 69

Controller Operating Modes
Dealing with Power Cuts and Power Restoration

Illustration The following illustration shows the various power restarts detected by the system.
If the duration of the cut is less than the power supply filtering time (about 10 ms for
an alternating current supply or 1 ms for a direct current supply), this is not noticed
by the program which runs normally.

Note: The context is saved in a battery backed-up RAM. At power up, the system checks
the state of the battery and the saved context to decide if a warm start can occur.

Power cut
detected

Run
Application

Power outage

Power restoration

Save
context OK

Memory card
 identical

Normal execution of
program Warm Start Cold Start

Standby power

No

Yes

Yes

Yes

No

No

Auto-test

WAIT

RUN
70 TWD USE 10AE

Controller Operating Modes
Run/Stop Input
Bit Versus Auto
Run

The Run/Stop input bit has priority over the "Automatic Start in Run" option that is
available from the Scan Mode dialog box. If the Run/Stop bit is set, then the
controller will restart in the Run Mode when power is restored.
The mode of the controller is determined as follows:

Operation The table below describes the processing phases for power cuts.

Run/Stop Input Bit Auto Start in Run Resulting State

Zero Zero Stop

Zero One Stop

Rising edge No effect Run

One No effect Run

Not configured in software Zero Stop

Not configured in software One Run

Note: For all Compact type of controllers of software version V1.0, if the controller
was in Run mode when power was interrupted, and the "Automatic Start in Run"
flag was not set from the Scan Mode dialog box, the controller will restart in Stop
mode when power is restored. Otherwise will perform a cold restart.

Note: For all Modular and Compact type of controllers of software version V1.11,
if the battery in the controller is operating normally when power was interrupted, the
controller will startup in the mode that was in effect at the time the power was
interrupted. The "Automatic Start in Run" flag, that was selected from the Scan
Mode dialog, will have no effect on the mode when the power is restored.

Phase Description

1 In the event of a power cut the system stores the application context and the time of
the cut.

2 All outputs are set to fallback status (0).

3 When power is restored, the context saved is compared with the one in progress
which defines the type of start to run:

If the application context has changed (loss of system context or new
application), the controller initializes the application: Cold restart (systematic for
compact).
If the application context is the same, the controller restarts without initializing
data: warm restart.
TWD USE 10AE 71

Controller Operating Modes
Dealing with a warm restart

Cause of a Warm
Restart

A warm restart can occur:
When power is restored without loss of application context,
When bit %S1 is set to state 1 by the program,
From the Operator Display when the controller is in STOP mode

Illustration The drawing below describes a warm restart operation in RUN mode.

Acquisition of inputs

if bit %S1=1,
possible process with

warm restart

Set bit %S1 to 0

Execution of program
TOP

Update outputs

Stop the processor
Save application

context

Restoration of power

Partial configuration
auto-tests

Set bit %S1 to 1
for only one cycle

WAITRUN

BOT

No

Yes

>Micro power
cut

Detection of
power cut
72 TWD USE 10AE

Controller Operating Modes
Restart of the
Program
Execution

The table below describes the restart phases for running a program after a warm
restart.

Processing of a
Warm-Start

In the event of a warm-start, if a particular application process is required, bit %S1
must be tested at the start of the task cycle, and the corresponding program called
up.

Outputs after
Power Failure

Once a power outage is detected, outputs are set to (default) fallback status (0).
When power is restored, outputs are at last state until they are updated again by the
task.

Phase Description

1 The program execution resumes from the same element where it was prior to
the power cut, without updating the outputs.
Note: Only the same element from the user code is restarted. The system code
(for example, the updating of outputs) is not restarted.

2 At the end of the restart cycle, the system:
Unreserves the application if it was reserved (and provokes a STOP
application in case of debugging)
Reinitializes the messages

3 The system carries out a restart cycle in which it:
Relaunches the task with bits %S1 (warm-start indicator) and %S13 (first
cycle in RUN) set to 1
Resets bits %S1 and %S13 to 0 at the end of the first task cycle
TWD USE 10AE 73

Controller Operating Modes
Dealing with a cold start

Cause of a Cold
Start

A cold-start can occur:
When loading a new application into RAM
When power is restored with loss of application context
When system bit %S0 is set to state 1 by the program
From the Operator Display when the controller is in STOP mode

Illustration The drawing below describes a cold restart operation in RUN mode.

>Micro power
cut

Acquisition of inputs

if bit %S0=1,
possible process with

cold restart

Set bit %S0 to 0

Execution of program
TOP

Update outputs

Stop the processor
Save application

context

Restoration of power

Completion of
configuration auto-tests

Set bit %S0 to 1

Yes

Initialization of
application

WAITRUN

BOT

No

Detection of
power cut

AUTO-TESTS
74 TWD USE 10AE

Controller Operating Modes
Operation The table below describes the restart phases for running a program after a cold
restart.

Processing of a
Cold-Start

In the event of a cold-start, if a particular application process is required, bit %S0
(which is at 1) must be tested during the first cycle of the task.

Outputs after
Power Failure

Once a power outage is detected, outputs are set to (default) fallback status (0).
When power is restored, outputs are at zero until they are updated again by the task.

Phase Description

1 At start up, the controller is in RUN.
At a cold restart after a stop due to an error, the system forces a cold restart.
The program execution restarts at the beginning of the cycle.

2 The system:
Resets internal bits and words and the I/O images to 0
Initializes system bits and words
Initializes function blocks from configuration data

3 For this first restart cycle, the system:
Relaunches the task with bits %S0 (cold-start indicator) and %S13 (first
cycle in RUN) set to 1
Resets bits %S0 and %S13 to 0 at the end of this first task cycle
Resets bits %S31, %S38 and %S39 (event control indicators), and word
%SW48 (number of events executed).
TWD USE 10AE 75

Controller Operating Modes
Initialization of objects

Introduction The controllers can be initialized by Twido Soft by setting system bits %S0 (a cold
restart) and %S1 (a warm restart).

Cold Start
Initialization

For a cold start initialization, system bit %S0 must be set to 1.

Initialization of
objects (identical
to cold start) on
power-up using
%S0 and %S1

To initialize objects on power-up, system bit %S1 and %S0 must be set to 1.

The following example shows how to program a warm restart object initialization
using system bits.

Note: Do not set %S0 to 1 for more than one controller scan.

%S1 %S0

LD %S1 If %S1 = 1 (warm restart), set %S0 to 1 initialize the controller.
ST %S0 These two bits are reset to 0 by the system at the end of the

following scan.
76 TWD USE 10AE

TWD USE 10AE
5

Event task management
In Brief...

At a Glance This chapter describes event tasks and how they are executed in the controller.

What's in this
Chapter?

This chapter contains the following topics:

Note: Event tasks are not managed by the Twido Brick 10 controller
(TWDLCAA10DRF).

Topic Page

Overview of event tasks 78

Description of different event sources 79

Event management 81
77

Event task management
Overview of event tasks

Introduction The previous chapter presented periodic (See Periodic Scan, p. 64) and cyclic (See
Cyclic Scan, p. 62) tasks in which objects are updated at the start and end of the
task. Event sources may cause a certain task to be stopped while higher priority
(event) tasks are executed to allow objects to be updated more quickly.
An event task:

is a part of a program executed when a given condition is met (event source),
has a higher priority than the main program,
guarantees a rapid response time enabling the overall response time of the
system to be reduced.

Description of an
Event

An event is composed of:
an event source which can be defined as a software or hardware interrupt
condition to interrupt the main program (See Description of different event
sources, p. 79),
 a section which is a independent programmed entity related to an event,
an event queue which can be used to store a list of events until they are executed,
a priority level which specifies the order of event execution.
78 TWD USE 10AE

Event task management
Description of different event sources

Overview of
Different Event
Sources

An event source needs to be managed by the software to make the sure the main
program is properly interrupted by the event, and to call the programming section
linked to the event. The application scan time has no effect on the execution of the
events.
The following 9 event sources are allowed:

4 conditions linked to the VFC function block thresholds (2 events per %VFC
instance),
4 conditions linked to the physical inputs of a controller base,
1 periodic condition.

An event source can only be attached to a single event, and must be immediately
detected by TwidoSoft. Once it is detected, the software executes the programming
section attached to the event: each event is attached to a subroutine labeled SRi:
defined on configuration of the event sources.

Physical Input
Events of a
Controller Base

Inputs %I0.2, %I0.3, %I0.4 and %I0.5 can be used as event sources, provided they
are not locked and that the events are allowed during configuration.
Event processing can be activated by inputs 2 to 5 of a controller base (position 0),
on a rising or falling edge.
For further details on configuring this event, refer to the section entitled "Hardware
Configuration -> Input Configuration" in the "TwidoSoft Operation Guide" on-line
help.

Output Event of a
%VFC Function
Block

Outputs TH0 and TH1 of the %VFC function block are event sources. Outputs TH0
and TH1 are respectively set:

to 1 when the value is greater than threshold S0 and threshold S1,
to 0 when the value is less than threshold S0 and threshold S1.

A rising or falling edge of these outputs can activate an event process.
For further details on configuring this event, refer to the section entitled "Software
Configuration -> Very Fast Counters" in the "TwidoSoft Operation Guide" on-line
help.
TWD USE 10AE 79

Event task management
Periodic event This event periodically executes a single programming section. This task has higher
priority than the main task (master).
However, this event source has lower priority than the other event sources.
The period of this task is set on configuration, from 5 to 255 ms. Only one periodic
event can be used.
For further details on configuring this event, refer to the section entitled "Configuring
Program Parameters -> Scan Mode" in the "TwidoSoft Operation Guide" on-line
help.
80 TWD USE 10AE

Event task management
Event management

Events queue
and priority

Events have 2 possible priorities: High and Low. But only one type of event (thus
only one event source) can have High priority. The other events therefore have Low
priority, and their order of execution depends on the order in which they are
detected.
To manage the execution order of the event tasks, there are two event queues:

in one, up to 16 High priority events can be stored (from the same event source),
in the other, up to 16 Low priority events can be stored (from other event
sources).

These queues are managed on a FIFO basis: the first event to be stored is the first
to be executed. But they can only hold 16 events, and all additional events are lost.
The Low priority queue is only executed once the High priority queue is empty.

Event Queue
Management

Each time an interrupt appears (linked to an event source), the following sequence
is launched:

Before the context is re-established, all the events in the queue must be executed.

Event check System bits and words are used to check the events (See System Bits and System
Words, p. 509):

%S31: used to execute or delay an event,
%S38: used to decide whether or not to place events in the events queue,
%S39: used to find out if events are lost,
%SW48: shows how many events have been executed since the last cold start.

The value of the bits and words is reset to zero on a cold restart or after an
application is loaded, but remains unchanged after a warm restart. In all cases, the
events queue is reset.

Step Description

1 Interrupt management:
recognition of the physical interrupt,
event stored in the suitable event queue,
verification that no event of the same priority is pending (if so the event
stays pending in the queue).

2 Save context.

3 Execution of the programming section (subroutine labeled SRi:) linked to the
event.

4 Updating of output

5 Restore context
TWD USE 10AE 81

Event task management
82 TWD USE 10AE

TWD USE 10AE
II

Special Functions
At a Glance

Subject of this
Part

This part describes communications, built-in analog functions, managing analog I/O
modules and installing the AS-Interface V2 bus for Twido controllers.

What's in this
Part?

This part contains the following chapters:

Chapter Chapter Name Page

6 Communications 85

7 Built-In Analog Functions 183

8 Managing Analog Modules 187

9 Installing the AS-Interface V2 bus 195

10 Operator Display Operation 231
83

Special Functions
84 TWD USE 10AE

TWD USE 10AE
6

Communications
At a Glance

Subject of this
Chapter

This chapter provides an overview of configuring, programming, and managing
communications available with Twido controllers.
85

Communications
What's in this
Chapter?

This chapter contains the following topics:

Topic Page

Presentation of the different types of communication 87

TwidoSoft to Controller communications 89

Communication between TwidoSoft and a Modem 95

Remote Link Communications 105

ASCII Communications 119

Modbus Communications 129

Standard Modbus Requests 143

Ethernet TCP/IP Communications Overview 149

Quick TCP/IP Setup Guide for PC-to-Controller Ethernet Communication 150

Connecting your Controller to the Network 155

IP Addressing 156

Assigning IP Addresses 158

TCP/IP Setup 162

IP Address Configure Tab 164

Marked IP Tab 166

Idle Checking Tab 168

Remote Devices Tab 170

Viewing the Ethernet Configuration 172

Ethernet Connections Management 173

Ethernet LED Indicators 175

TCP Modbus Messaging 177
86 TWD USE 10AE

Communications
Presentation of the different types of communication

At a Glance Twido provides one or two serial communications ports used for communications to
remote I/O controllers, peer controllers, or general devices. Either port, if available,
can be used for any of the services, with the exception of communicating with Twido
Soft, which can only be performed using the first port. Three different base protocols
are supported on each Twido controller: Remote Link, ASCII, or Modbus (modbus
master or modbus slave).
Moreover, the TWDLCAE40DRF compact controller provides one RJ-45 Ethernet
communications port. It supports the Modbus TCP/IP client/server protocol for peer-
to-peer communications between controllers over the Ethernet network.

Remote Link The remote link is a high-speed master/slave bus designed to communicate a small
amount of data between the master controller and up to seven remote (slave)
controllers. Application or I/O data is transferred, depending on the configuration of
the remote controllers. A mixture of remote controller types is possible, where some
can be remote I/O and some can be peers.

ASCII The ASCII protocol is a simple half-duplex character mode protocol used to transmit
and/or receive a character string to/from a simple device (printer or terminal). This
protocol is supported only via the "EXCH" instruction.

Modbus The Modbus protocol is a master/slave protocol that allows for one, and only one,
master to request responses from slaves, or to act based on the request. The master
can address individual slaves, or can initiate a broadcast message to all slaves.
Slaves return a message (response) to queries that are addressed to them
individually. Responses are not returned to broadcast queries from the master.
Modbus master - The modbus master mode allows the Twido controller to send a
modbus query to a slave and await its reply. The modbus master mode is supported
only via the "EXCH" instruction. Both Modbus ASCII and RTU are supported in
modbus master mode.
Modbus Slave - The modbus slave mode allows the Twido controller to respond to
modbus queries from a modbus master, and is the default communications mode if
no other type of communication is configured. The Twido controller supports the
standard modbus data and control functions and service extensions for object
access. Both Modbus ASCII and RTU are supported in modbus slave mode.

Note: 32 devices (without repeaters) can be installed on an RS-485 network (1
master and up to 31 slaves), the addresses of which can be between 1 and 247.
TWD USE 10AE 87

Communications
Modbus TCP/IP

The following information describes the Modbus Application Protocol (MBAP).
The Modbus Application Protocol (MBAP) is a layer-7 protocol providing peer-to-
peer communication between programmable logic controllers (PLCs) and other
nodes on a LAN.
The current Twido controller TWDLCAE40DRF implementation transports Modbus
Application Protocol over TCP/IP on the Ethernet network. Modbus protocol
transactions are typical request-response message pairs. A PLC can be both client
and server depending on whether it is querying or answering messages.

Note: Modbus TCP/IP is solely supported by TWDLCAE40DRF series of compact
controllers with built-in Ethernet network interface.
88 TWD USE 10AE

Communications
TwidoSoft to Controller communications

At a Glance Each Twido controller has on its Port 1 a built-in EIA RS-485 terminal port. This has
its own internal power supply. Port 1 must be used to communicate with the
TwidoSoft programming software.
No optional cartridge or communication module can be used for this port. A modem,
however, can use this port.
There are several ways to connect the PC to the Twido controller RS-485 Port 1:

By TSXPCX cable,
By telephone line: Modem connection.

Moreover, the TWDLCAE40DRF compact controller has a built-in RJ-45 Ethernet
network connection port that can be used to communicate with the Ethernet-capable
PC running the TwidoSoft programming software.
There are two ways for the Ethernet-capable PC to communicate with the
TWDLCAE40DRF Twido controller RJ-45 port:

By direct cable connection via a UTP Cat5 RJ45 Ethernet crossover cable (not
recommended),
By connection to the Ethernet network via a SFTP Cat5 RJ45 Ethernet cable
available from the Schneider Electric catalog (cable reference: 490NTW000••).

CAUTION
EQUIPMENT DAMAGE
TwidoSoft may not sense the disconnection when physically moving the
TSXPCX1031, TSX PCX 3030 or Ethernet communication cable from
a first controller and quickly inserting it in a second controller. To avoid
this condition, use TwidoSoft to disconnect before moving the cable.

Failure to follow this precaution can result in injury or equipment
damage.
TWD USE 10AE 89

Communications
TSXPCX Cable
Connection

The EIA RS-232C or USB port on your personal computer is connected to the
controller's Port 1 using the TSXPCX1031 or TSX PCX 3030 multi-function
communication cable. This cable converts signals between EIA RS-232 and EIA
RS-485 for the TSX PCX 1031 and between USB and EIA RS-485 for the TSX PCX
3030. This cable is equipped with a 4-position rotary switch to select different modes
of operation. The switch designates the four positions as "0-3", and the appropriate
setting for TwidoSoft to Twido controller is location 2.
This connection is illustrated in the diagram below.

Note: For this cable, the DPT signal on pin 5 is not tied to 0V. This indicates to the
controller that the current connection is a TwidoSoft connection. The signal is
pulled up internally, informing the firmware executive that this is a TwidoSoft
connection.

1

2

3

0

PC Serial Port
EIA RS-232

Port 1
RS485 TSX PCX 1031

TSX PCX 3030 Port USB PC
90 TWD USE 10AE

Communications
Pin outs of Male
and Female
Connectors

The following figure shows the pin outs of a male 8-pin miniDIN connector and of a
terminal:

The following figure shows the pin outs of a SubD female 9-pin connector for the
TSX PCX 1031.

RS485 optionPin outs
1
2
3
4
5
6
7
8

Base RS485
A (+)
B (-)
NC
/DE
/DPT
NC
0 V
5 V

 RS232-C
RTS

TXD

DSR

GND
5 V

DTR

RXD

GND

Pin outs
A
B
SG

RS485
A(+)
B(-)
0V

A B SG

Mini DIN

TWD NAC232D, TWD NAC485D
TWD NOZ485D, TWD NOZ232D

Terminal

TWD NAC485T
TWD NOZ485T

A (+)
B (-)
NC
NC
NC
NC
0 V
5 V

Note: Maximum total consumption for 5V
mode (pin 8): 180mA

Pin outs
1
2
3
4
5
6
7
8

RS232
DCD
RX
TX
DTR
SG
NC
RTS
CTS

9 NC

1

5

6

9

TWD USE 10AE 91

Communications
Telephone Line
Connection

A modem (See Communication between TwidoSoft and a Modem, p. 95)
connection enables programming of and communication with the controller using a
telephone line.
The modem associated with the controller is a receiving modem connected to port
1 of the controller. The modem associated with the PC can be internal, or external
and connected to a COM serial port.
This connection is illustrated in the diagram below.

Note: Only one modem can be connected to port 1 of the controller.

Note: Caution. Remember to install the software provided with the modem, as
TwidoSoft only takes into account the installed modems.

PC Serial Port
EIA RS-232Port 1

RS485

 Telephone line

 Modem
 External
 modem

TSXPCX1031 position 2,
with Tx/Rx inversion

SUB-D female
connector
92 TWD USE 10AE

Communications
Ethernet
Network
Connection

The following figure shows a PC-to-Twido connection via a network Ethernet hub/
switch:

The Twido TWDLCAE40DRF features a RJ-45 connector to connect to the 100
BASE-TX network Ethernet with auto negotiation. It can accomodate both 100Mbps
and 10 Mbps network speeds.
The following figure shows the RJ-45 connector of the Twido controller:

The eight pins of the RJ-45 connector are arranged vertically and numbered in order
from bottom to top. The pinout for the RJ-45 connector is described in the table
below:

Note: Although direct cable connection (using a Ethernet crossover cable) is
supported between the Twido TWDLCAE40DRF and the PC running the
TwidoSoft programming software, we do not recommend it. Therefore, you should
always favor a connection via a network Ethernet hub/switch.

Note: The PC running the TwidoSoft application must be Ethernet-capable.

Pinout Function Polarity

8 NC

7 NC

6 RxD (-)

5 NC

4 NC

3 RxD (+)

PC Ethernet Network Port
RJ-45

Twido TWDLCAE40DRF

RJ-45 male
connector

RJ-45 male
connector

 Ethernet
Hub/Switch

RJ-45 Ethernet Port

SFTP Cat5 RJ45 Ethernet cable
TWD USE 10AE 93

Communications
2 TxD (-)

1 TxD (+)

Note:
The same connector and pinout is used for both 10Base-T and 100Base-TX.
When connecting the Twido controller to a 100Base-TX network, you should
use at least a category 5 Ethernet cable.

Pinout Function Polarity
94 TWD USE 10AE

Communications
Communication between TwidoSoft and a Modem

General A PC executing Twidosoft can be connected to a Twido controller for transferring
applications, animating objects and executing operator mode commands. It is also
possible to connect a Twido controller to other devices, such as another Twido
controller, for establishing communication with the application process.

Installing the
Modem

All modems the user wishes to use with Twidosoft must be installed running
Windows from your PC.
To install your modems running Windows, follow the Windows documentation.
This installation is independent from Twidosoft.

Establishing
Connection

The default communication connection between Twidosoft and the Twido controller
is made by a serial communication port, using the TSX PCX 1031 cable and a
crossed adaptater (see Appendix 1, p. 103).
If a modem is used to connect the PC, this must be indicated in the Twidosoft
software.
To select a connection using Twidosoft, click "file", then "preferences".

Twido

TEL.LINE

POWER

V24/RS-232-C
TD-33

WESTERMO

TDRDRTSDTRDCDPWR
TWD USE 10AE 95

Communications

This screen allows you to select a connection or manage connections (creation,
modification, etc.).
To use an existing connection, select it from those displayed in the drop-down menu.
If you have to add, modify or delete a connection, click once on "Manage
connections"; a window opens displaying the list of connections and their properties.

In this case, 2 serial ports are displayed (Com1 and Com4), as well as a modem
connection showing a TOSHIBA V.90 model configured to compose the number:
0231858445 (national call).
You can change the name of each connection for application maintenance purposes
(COM1 or COM4 cannot be changed).
This is how you define and select the connection you wish to use for connecting your
PC to a modem.
However, this is just part of the process for making an overall connection between
the computer and the Twido controller.
The next step involves the Twido controller. The remote Twido must be connected
to a modem.

Preferences

List

Ladder
Help

Cancel

OK

1 line

3 lines (addresses AND symbols)

3 lines (addresses OR symbols)

Hex.

Decimal

Symbols

Addresses

Connection managementClose Ladder viewer on Edit Rung
Display toolbars

Auto line validate

Connection:

COM 1

Ladder Information

Default Program Editor List/Ladder Animation

Display Attributes

Connection management

Add Modify Delete OK

Name
COM1
COM4
My Modem 1

Connection type
Serial
Serial
MODEM: TOSHIBA Internal V.90 Mod

Phone / IP
COM1
COM4
0231858445

Timeout
5000
5000
5000

Break timeout
20
20
20
96 TWD USE 10AE

Communications
All modems need to be initialized to establish a connection. The Twido controller
containing at least version V2.0 firmware is capable, on power-up, of sending an
adapted string to the modem, if the modem is configured in the application.

Configuring the
Modem

The procedure for configuring a modem in a Twido controller is as follows:

Once the modem is configured on port 1, the properties must be defined. Right-click
on the modem to reveal the choice of "delete" or "properties". Clicking "properties"
lets you either select a known modem, create a new modem, or modify a modem.

Note: The modem is completely managed by the Twido controller through port 1.
This means you can connect a modem to communication port 2, but in this case all
of the modem’s operating modes and its initialization sequence must be performed
manually, and cannot be performed in the same way as with communication port 1.

 TwidoSoft - no heading
File Edit Display Tools Hardware Software Program PLC Window Help

No heading
TWDLMDA40DUK

Hardware

Software
Expansion bus

Constants (KD)
Constants (KF)
Counters

Constants

123

D

F

ABCABC %%

Ladder viewer

Port 1: Remote Link, 1
RUNG 0 END OF PROGRAM

Add a modem

Edit Controller Communications Setup…
Add Remote Controller…

Delete...

No heading
TWDLMDA40DUK

Hardware

Software
Expansion bus

Constants (KD)
Constants

D

Port 1: Remote Link, 1
1: Modem

Delete
Properties...
TWD USE 10AE 97

Communications
Next, select "properties", then:

You can select a previously-defined modem, or create a new one by clicking "..." .

Then give the new profile a name and complete the Hayes initialization commands
as described in the modem documentation.
In the image, "xxxxxx" represents the initialization sequence you must enter to
prepare the modem for suitable communication, i.e. the baud rate, parity, stop bit,
and receive mode.
To complete the sequence, please refer to your modem documentation.
The maximum string length is: 127 characters.
When your application is complete, or at least when communication port 1 is fully
described, transfer the application using a "point to point connection".
The Twido controller is now ready to be connected to a PC executing Twidosoft via
modems.

Properties of the Modem

OK Cancel

ATE0Q1

 Modem

Hayes initialization command

...Generic Modem

Add / Modify a Modem

OK Cancel

ATE0Q1 xxxxxxxxxx

Bourguébus
 Modem

Hayes initialization command
98 TWD USE 10AE

Communications
Connection
Sequence

Once Twidosoft and the Twido controller are prepared, establish connection as
follows:

Operating Modes The Twido controller sends the initialization string to the connected, powered-up
modem. When a modem is configured in the Twido application, the controller first
sends an "FF" command to establish whether the modem is connected. If the
controller receives an answer, the initialization string is sent to the modem.

Step Action

1 Power-up the Twido controller and modem.

2 Start your computer and run Twidosoft.

3 Select the "PLC" menu, then "Select a connection", and select "My modem" (or the name you have given
to your modem connection – see "creation of a connection":)

4 Connect TwidoSoft

 TwidoSoft - no heading
File Edit Display Tools Hardware Software Program PLC Window Help

Connect
Disconnect

Change modem configuration…
Check PLC
RUN

Transfer PC => Controller…

Memory Usage

Backup…
Restore

STOP

Select a connection

Init

Protect the application

Erase…

Ctrl+F5

 COM1
 COM4
My modem

Note: If you want to use your modem connection all the time, click "file",
"preferences", and select "my modem" (or the name you have given it). Twidosoft
will now memorize this preference.
TWD USE 10AE 99

Communications
Internal, External
and International
Calls

If you are communicating with a Twido controller within your company premises, you
can use just the line extension needed to dial, such as: 8445

If you are using an internal switchboard to dial telephone numbers outside your
company and you have to first press "0" or "9" before the number, use this syntax:
0,0231858445 or 9,0231858445

For international calls, the syntax is: +19788699001, for example. And if you are
using a switchboard: 0,+ 19788699001

Connection management

Add Modify Delete OK

Name
COM1
COM4
My Modem 1

Connection type
Serial
Serial
MODEM: TOSHIBA Internal V.90

Phone
COM1
COM4
8445

Timeout
5000
5000
5000

Break timeout
20
20
20

Connection management

Add Modify Delete OK

Name
COM1
COM4
My Modem 1

Connection type
Serial
Serial
MODEM: TOSHIBA Internal V.90

Phone
COM1
COM4
0,0231858445

Timeout
5000
5000
5000

Break timeout
20
20
20

Connection management

Add Modify Delete OK

Name
COM1
COM4
My Modem 1

Connection type
Serial
Serial
MODEM: TOSHIBA Internal V.90

Phone
COM1
COM4
0,+19788699

Timeout
5000
5000
5000

Break timeout
20
20
20
100 TWD USE 10AE

Communications
Frequently
Asked Questions

When your communication has been established for a few minutes, you can
experience some communication errors. In this case, you must adjust the
communication parameters.
Twidosoft uses a modbus driver to communicate via serial ports or internal modems.
When communication starts, the modbus driver is visible in the toolbar. Double-click
on the modbus driver icon to open the window. You now have access to the modbus
driver parameters, and the "runtime" tab gives you information on the frames
exchanged with the remote controller.
If the "Number of timeouts" increases or is other than 0, change the value using
"Connection management", accessible using Twidosoft by clicking "File" then
"Preferences" and "Connection management". Click on the "timeout" field, then click
the modification button and enter a new, higher value. The default value is "5000",
in milliseconds.
Try again with a new connection. Adjust the value until your connection stabilizes.

MODBUS Driver - MODBUS01

Reset

 Communication

Configuration Runtime Debug About

Mode RTU

1

17

158

17

404

0

0

Connections

Frames Sent

Bytes Sent

Frames Received

Bytes Received

Number of Timeouts

Checksum Errors

Hide
TWD USE 10AE 101

Communications
Examples Example 1: Twidosoft connected to a TWD LMDA 20DRT (Windows 98 SE).
PC: Toshiba Portege 3490CT running Windows 98,
Modem (internal on PC): Toshiba internal V.90 modem,
Twido Controller: TWD LMDA 20DRT version 2.0,
Modem (connected to Twido): Type Westermo TD-33 / V.90, reference SR1
MOD01, available from the new Twido catalog (September 03) (see Appendix
2, p. 104),
Cable: TSX PCX 1031, connected to Twido communication port 1, and an
adaptor: 9 pin male / 9 pin male, in order to cross Rx and Tx during connection
between the Westermo modem and the Twido controller (see Appendix 1,
p. 103). You can also use the TSX PCX 1130 cable (RS485/232 conversion
and Rx/Tx crossing).

The first test involves using 2 analog telephone lines internal to the company, and
not using the entire number – just the extension (hence only 4 digits for the internal
Toshiba V.90 modem telephone number).
For this test, the connection parameters (Twidosoft menu "preferences" then
"Connection management") were established with their default value, with a timeout
of 5000 and break timeout of 20.

Example 2: Twidosoft connected to TWD LMDA 20DRT (windows XP Pro)
PC: Compaq Pentium 4, 2.4GHz,
Modem: Lucent Win modem, PCI bus,
Twido Controller: TWD LMDA 20DRT version 2.0,
Modem (connected to Twido): Type WESTERMO TD-33 / V.90, reference
SR1 MOD01, available from the new Twido catalog (September 03) (see
Appendix 2, p. 104),
Cable: TSX PCX 1031, connected to Twido communication port 1, and an
adaptor: 9 pin male / 9 pin male, in order to cross Rx and Tx during connection
between the Westermo modem and the Twido controller (see Appendix 1,
p. 103). You can also use the TSX PCX 1130 cable (RS485/232 conversion
and Rx/Tx crossing).

TEL.LINE

POWER

V24/RS-232-C
TD-33

WESTERMO

TDRDRTSDTRDCDPWR

Toshiba Portege
3490CT
Modem integrated

Crossed
adaptor

Cable:
TSX PCX 1031

Westermo TD-33
SR1 MOD01
102 TWD USE 10AE

Communications

The first test involves using two analog telephone lines internal to the company, and
not using the entire number – just the extension (hence only 4 digits for the internal
Toshiba V.90 modem telephone number).
For this test, the connection parameters (Twidosoft menu "preferences" then
"Connection management") were established with their default value, with a timeout
of 5000 and break timeout of 20.

Appendix 1 Crossed adaptor for cable TSX PCX 1031 and Westermo TD-33 modem (SR1
MOD01):

TEL.LINE

POWER

V24/RS-232-C
TD-33

WESTERMO

TDRDRTSDTRDCDPWR

Compaq 2.4 GHz
Lucent with modem

Crossed
adaptor

Cable:
TSX PCX 1031

Westermo TD-33
SR1 MOD01

1
59

65
1 6

9

TWD USE 10AE 103

Communications
Appendix 2 Modem Westermo TD-33, Schneider reference number SR1 MOD01. This modem
manages four DIP switches, which must all be set to OFF:

Appendix 3 Wavecom WMOD2B modem, Schneider reference number SR1 MOD02 double
band (900/1800Hz):

Appendix 4 Reference numbers of the products used in this document:
Twido product: TWD LMDA 20DRT,
Twidosoft software: TWD SPU 1002 V10M,
TSX PCX 1031 cable,
TSX PCX 1130 cable,
RTU modem: Westermo TD-33 / V90 SR1 MOD01,
GSM modem: Wavecom WMOD2B SR1 MOD02.

Factory Settings

Use stored configuration (speed & format etc)
Disable DTR Hotcall, Auto Band

1 2 3 4

ON
104 TWD USE 10AE

Communications
Remote Link Communications

Introduction The remote link is a high-speed master/slave bus designed to communicate a small
amount of data between the master controller and up to seven remote (slave)
controllers. Application or I/O data is transferred, depending on the configuration of
the remote controllers. A mixture of remote controller types is possible, where some
can be remote I/O and some can be peers.

Note: The master controller contains information regarding the address of a
remote I/O. It does not know which specific controller is at the address. Therefore,
the master cannot validate that all the remote inputs and outputs used in the user
application actually exist. Take care that these remote inputs or outputs actually
exist.

Note: The remote I/O bus and the protocol used is proprietary and no third party
devices are allowed on the network.

CAUTION
UNEXPECTED EQUIPMENT OPERATION

Be sure that there is only one master controller on a remote link and
that each slave has a unique address. Failure to observe this
precaution may lead to corrupted data or unexpected and
ambiguous results.
Be sure that all slaves have unique addresses. No two slaves should
have the same address. Failure to observe this precaution may lead
to corrupted data or unexpected and ambiguous results.

Failure to follow this precaution can result in injury or equipment
damage.

Note: The remote link requires an EIA RS-485 connection and can only run on one
communications port at a time.
TWD USE 10AE 105

Communications
Hardware
Configuration

A remote link must use a minimum 3-wire EIA RS-485 port. It can be configured to
use either the first or an optional second port if present.

The table below lists the devices that can be used:

Note: Only one communication port at time can be configured as a remote link.

Remote Port Specifications

TWDLC•A10/16/24DRF,
TWDLCA•40DRF,
TWDLMDA20/40DUK,
TWDLMDA20/40DTK,
TWDLMDA20DRT

1 Base controller equipped with a 3-wire EIA RS-485 port
with a miniDIN connector.

TWDNOZ485D 2 Communication module equipped with a 3-wire EIA RS-
485 port with a miniDIN connector.
Note: This module is only available for the Modular
controllers. When the module is attached, the controller
cannot have an Operator Display expansion module.

TWDNOZ485T 2 Communication module equipped with a 3-wire EIA RS-
485 port with a terminal.
Note: This module is only available for the Modular
controllers. When the module is attached, the controller
cannot have an Operator Display expansion module.

TWDNAC485D 2 Communication adapter equipped with a 3-wire EIA RS-
485 port with a miniDIN connector.
Note: This adapter is only available for the Compact 16, 24
and 40 I/O controllers and the Operator Display expansion
module.

TWDNAC485T 2 Communication adapter equipped with a 3-wire EIA RS-
485 port with a terminal.
Note: This adapter is only available for the Compact 16, 24
and 40 I/O controllers and the Operator Display expansion
module.

TWDXCPODM 2 Operator Display expansion module equipped with a 3-wire
EIA RS-485 port with a miniDIN connector or a 3-wire
EIA RS-485 port with a terminal.
Note: This module is only available for the Modular
controllers. When the module is attached, the controller
cannot have a Communication expansion module.
106 TWD USE 10AE

Communications
Cable
Connection to
Each Device

The cable connections made to each remote device are shown below.

Note: You can only check the presence and configuration (RS232 or RS485) of
port 2 at power-up or reset by the firmware executive program.

Note: The DPT signal on pin 5 must be tied to 0V on pin 7 in order to signify the
use of remote link communications. When this signal is not tied to ground, the
Twido controller as either the master or slave will default to a mode of attempting
to establish communications with TwidoSoft.

Note: The DPT to 0V connection is only necessary if you are connected to a base
controller on Port 1.

A(+) B(-) 0V DPT

Master
. . .controller

A(+) B(-) 0V DPT

Remote
controller

A(+) B(-) 0V DPT

Remote
controller

Mini-DIN connection

1 2 7 5

Terminal block connection

A(+) B(-) 0V

Master
controller

A(+) B(-) 0V

Remote
controller

A(+) B(-) 0V

Remote
controller

A B SG
TWD USE 10AE 107

Communications
Software
Configuration

There must be only one master controller defined on the remote link. In addition,
each remote controller must maintain a unique slave address. Multiple masters or
slaves using identical addresses can either corrupt transmissions or create
ambiguity.

Master
Controller
Configuration

The master controller is configured using TwidoSoft to manage a remote link
network of up to seven remote controllers. These seven remote controllers can be
configured either as remote I/Os or as peer controllers. The address of the master
configured using TwidoSoft corresponds to address 0.
To configure a controller as a Master Controller, use TwidoSoft to configure port 1
or port 2 as remote links and select the address 0 (Master).
Then, from the "Add remote controller" window, you can specify the slave controllers
either as remote I/O, or as peer controllers, as well as their addresses.

Remote
Controller
Configuration

A remote controller is configured using TwidoSoft, by setting port 1 or 2 as a remote
link or by assigning the port an address from 1 to 7.
The table below summarizes the differences and constraints of each of these types
of remote controller configurations:

CAUTION
Unexpected Equipment Operation
Be sure that there is only one master controller on a remote link and that
each slave has a unique address. Failure to observe this precaution
may lead to corrupted data or unexpected and ambiguous results.

Failure to follow this precaution can result in injury or equipment
damage.

Type Application Program Data Access

Remote I/O No

Not even a simple "END"
statement
RUN mode is coupled to the
Master's.

%I and %Q

Only the local I/O of the
controller is accessible (and
not its I/O extension).

Peer controller Yes

Run mode is independent of
the Master's.

%INW and %QNW

A maximum of 4 input words
and 4 output words can be
transmitted to and from each
peer.
108 TWD USE 10AE

Communications
Remote
Controller Scan
Synchronization

The update cycle of the remote link is not synchronized with the master controller's
scan. The communications with the remote controllers is interrupt driven and
happens as a background task in parallel with the running of the master controller's
scan. At the end of the scan cycle, the most up to date values are read into the
application data to be used for the next program execution. This processing is the
same for remote I/O and peer controllers.
Any controller can check for general link activity using system bit %S111. But to
achieve synchronization, a master or peer will have to use system bit %S110. This
bit is set to 1 when a complete update cycle has taken place. The application
program is responsible for resetting this to 0.
The master can enable or disable the remote link using system bit %S112.
Controllers can check on the proper configuration and correct operation of the
remote link using %S113. The DPT signal on Port 1 (used to determine if TwidoSoft
is connected) is sensed and reported on %S100.
All these are summarized in the following table:

Master
Controller
Restart

If a master controller restarts, one of the following events happens:
A cold start (%S0 = 1) forces a re-initialization of the communications.
A warm start (%S1 = 1) forces a re-initialization of the communications.
In Stop mode, the master continues communicating with the slaves.

System Bit Status Indication

%S100 0 master/slave: DPT not active (TwidoSoft cable NOT connected)

1 master/slave: DPT active (TwidoSoft cable connected)

%S110 0 master/slave: set to 0 by the application

1 master: all remote link exchanges completed (remote I/O only)
slave: exchange with master completed

%S111 0 master: single remote link exchange completed
slave: single remote link exchange detected

1 master: single remote link exchange in progress
slave: single remote link exchange detected

%S112 0 master: remote link disabled

1 master: remote link enabled

%S113 0 master/slave: remote link configuration/operation OK

1 master: remote link configuration/operation error
slave: remote link operation error
TWD USE 10AE 109

Communications
Slave Controller
Restart

If a slave controller restarts, one of the following events happens:
A cold start (%S0 = 1) forces a re-initialization of the communications.
A warm start (%S1 = 1) forces a re-initialization of the communications.
In Stop mode, the slave continues communicating with the master. If the master
indicates a Stop state:

The remote I/Os apply a Stop state.
A peer controller continues in its current state.

Master
Controller Stop

When the master controller enters Stop mode, all slave devices continue
communicating with the master. When the master indicates a Stop is requested,
then a remote I/O controller will Stop, but peer controllers will continue in their
current Run or Stop state.
110 TWD USE 10AE

Communications
Remote I/O Data
Access

The remote controller configured to be a remote I/O does not have or execute its
own application program. The remote controller's base digital inputs and outputs are
a simple extension of the master controller's. The application must only use the full
three digit addressing mechanism provided.

Illustration

To communicate with remote I/O, the master controller uses the standard input and
output notation of %I and %Q. To access the third output bit of the remote I/O
configured at address 2, instruction %Q2.0.2 is used. Similarly, to read the fifth input
bit of the remote I/O configured at location 7, instruction %I7.0.4 is used.

Note: The module number is always zero for remote I/O.

Note: The master is restricted to accessing only the digital I/O that is part of the
remote’s local I/O. No analog or expansion I/O can be transferred, unless you use
peer communications.

%Q2.0.2
%I7.0.4

Remote Controller Address
Modular Number
Channel Number
TWD USE 10AE 111

Communications
Illustration

Remote I/O
Address 2

%I2.0.0

%I2.0.23

%Q2.0.0

%Q2.0.15

%I4.0.0

%I4.0.23

%Q4.0.0
 . . .
%Q4.0.15

 . . .

 . . .

 . . .

%I0.0.0

%I0.0.23

%Q0.0.0

%Q0.0.15

 . . .

 . . .

%I0.0.0

%I0.0.23

%Q0.0.0

%Q0.0.15

 . . .

 . . .

Remote link

Master controller
Address 0

Remote I/O
Address 4
112 TWD USE 10AE

Communications
Peer Controller
Data Access

To communicate with peer controllers, the master uses network words %INW and
%QNW to exchange data. Each peer on the network is accessed by its remote
address "j" using words %INWj.k and %QNWj.k. Each peer controller on the network
uses %INW0.0 to %INW0.3 and %QNW0.0 to %QNW0.3 to access data on the
master. Network words are updated automatically when the controllers are in Run
or Stop mode.
The example below illustrates the exchange of a master with two configured peer
controllers.

There is no peer-to-peer messaging within the remote link. The master application
program can be used to manage the network words, in order to transfer information
between the remote controllers, in effect using the master as a bridge.

Peer controller
Address 1

%INW1.0

%INW1.3

%QNW1.0

%QNW1.3

%INW3.0

%INW3.3

 . . .

 . . .

 . . .

%QNW0.0

%QNW0.3

%INW0.0

%IWN0.3

 . . .

 . . .

Remote link

%QNW0.0

%QNW0.3

%INW0.0

%INW0.3

 . . .

 . . .%QNW3.0

%QNW3.3
 . . .

Master controller
Address 0

Peer controller
Address 3
TWD USE 10AE 113

Communications
Status
Information

In addition to the system bits explained earlier, the master maintains the presence
and configuration status of remote controllers. This action is performed in system
words %SW111 and %SW113. Either the remote or the master can acquire the
value of the last error that occurred while communicating on the remote link in
system word %SW112.

System
Words

Use

%SW111 Remote link status: two bits for each remote controller (master only)

x0-6 0-Remote controller 1-7 not present

1-Remote controller 1-7 present

x8-14 0-Remote I/O detected at Remote controller 1-7

1-Peer controller detected at Remote controller 1-7

%SW112 Remote Link configuration/operation error code

0 - operations are successful

1 - timeout detected (slave)

2 - checksum error detected (slave)

3 - configuration mismatch (slave)

%SW113 Remote link configuration: two bits for each remote controller (master only)

x0-6 0-Remote controller 1-7 not configured

1-Remote controller 1-7 configured

x8-14 0-Remote I/O configured as remote controller 1-7

1-Peer controller configured as remote controller 1-7
114 TWD USE 10AE

Communications
Remote Link
Example

To configure a Remote Link, you must:
1. Configure the hardware.
2. Wire the controllers.
3. Connect the communications cable between the PC to the controllers.
4. Configure the software.
5. Write an application.
The diagrams below illustrate the use of the remote link with remote I/O and a peer
controller.
Step 1: Configure the Hardware:

The hardware configuration is three base controllers of any type. Port 1 is used for
two communication modes. One mode is to configure and transfer the application
program with TwidoSoft. The second mode is for the Remote Link network. If
available, an optional Port 2 on any of the controllers can be used, but a controller
only supports a single Remote Link.

Step 2: Wire the controllers

Note: In this example, the two first inputs on the Remote I/O are hard wired to the
first two outputs.

Peer controller

I0.0

I0.1

Q0.0

Q0.1

Master controller Remote I/O

A(+) B(-) GND DPT

Master
. . .controller

A(+) B(-) GND DPT

Remote controller
Address 1

A(+) B(-) GND DPT

Peer controller
Address 2

Mini-DIN connection

1 2 7 5

Terminal block connection

A(+) B(-) 0V

Master
controller

A(+) B(-) 0V

Remote controller
Address 1

A(+) B(-) 0V

Peer controller
Address 2

A B SG

. . .
TWD USE 10AE 115

Communications
Connect the A(+) and B(-) signal wires together. And at each controller, the DPT
signal is tied to ground. Although tying the signal to the ground is not required for
use with a remote link on Port 2 (optional cartridge or communication module), it is
good practice.

Step 3: Connect the Communications Cable between the PC and Controllers:

The TSXPCX1031 or TSX PCX 3030 multi-function programming cable is used to
communicate with each of the three base controllers. Be sure that the cable is on
switch position 2. In order to program each of the controllers, a point-to-point
communication with each controller will need to be to established. To establish this
communication: connect to Port 1 of the first controller, transfer the configuration
and application data, and set the controller to the run state. Repeat this procedure
for each controller.

Step 4: Configure the Software:
Each of the three controllers uses TwidoSoft to create a configuration, and if
appropriate, the application program.
 For the master controller, edit the controller communication setup to set the protocol
to "Remote Link" and the Address to "0 (Master)".

Note: The cable needs to be moved after each controller configuration and
application transfer.

1

2

3

0

Master Peer
Remote I/O TSX PCX 1031

PC Serial Port
EIA RS-232controllercontroller

TSX PCX 3030 USB Port

Controller comm. settings
 Type: Remote link

Address: 0 (Master)
116 TWD USE 10AE

Communications
Configure the remote controller on the master by adding a "Remote I/O" at address
"1" and a "Peer PLC" at address "2".

For the controller configured as a remote I/O, verify that the controller
communication setup is set to "Remote Link" and the address is set to "1".

For the controller configured as peer, verify that the controller communication setup
is set to "Remote Link" and the address is set to "2".

Step 5: Write the applications:
For the Master controller, write the following application program:

For the controller configured as a remote I/O, do not write any application program.
For the controller configured as peer, write the following application:

 Add Remote Controllers

Controller Usage: Remote I/O

Controller Usage: Peer controller

Remote Address: 1

Remote Address: 2

Controller comm. settings
 Type: Remote link

Address: 1

Controller comm. settings
 Type: Remote link

Address: 2

LD 1

[%MW0 := %MW0 +1]
[%QNW2.0 := %MW0]
[%MW1 := %INW2.0]

LD %I0.0
ST %Q1.00.0
LD %I1.0.0
ST %Q0.0

LD %I0.1
ST %Q1.0.1
LD %I1.0.1
ST %Q0.1

LD 1
[%QNW0.0 := %INW0.0]
TWD USE 10AE 117

Communications
In this example, the master application increments an internal memory word and
communicates this to the peer controller using a single network word. The peer
controller takes the word received from the master and echoes it back. In the master,
a different memory word receives and stores this transmission.
For communication with the remote I/O controller, the master sends its local inputs
to the remote I/O's outputs. With the external I/O hard wiring of the remote I/O, the
signals are returned and retrieved by the master.
118 TWD USE 10AE

Communications
ASCII Communications

Introduction ASCII protocol provides Twido controllers a simple half-duplex character mode
protocol to transmit and/or receive data with a simple device. This protocol is
supported using the EXCHx instruction and controlled using the %MSGx function
block.
Three types of communications are possible with the ASCII Protocol:

Transmission Only
Transmission/Reception
Reception Only

The maximum size of frames transmitted and/or received using the EXCHx
instruction is 256 bytes.

Hardware
Configuration

An ASCII link (see system bits %S103 and %S104 (See System Bits (%S), p. 510))
can be established on either the EIA RS-232 or EIA RS-485 port and can run on as
many as two communications ports at a time.
The table below lists the devices that can be used:

Remote Port Specifications

TWDLC•A10/16/24DRF,
TWDLCA•40DRF,
TWDLMDA20/40DTK,
TWDLMDA20DRT

1 Base controller equipped with a 3-wire EIA RS-485 port
with a miniDIN connector.

TWDNOZ232D 2 Communication module equipped with a 3-wire EIA RS-
232 port with a miniDIN connector.
Note: This module is only available for the Modular
controllers. When the module is attached, the controller
cannot have an Operator Display expansion module.

TWDNOZ485D 2 Communication module equipped with a 3-wire EIA RS-
485 port with a miniDIN connector.
Note: This module is only available for the Modular
controllers. When the module is attached, the controller
cannot have an Operator Display expansion module.

TWDNOZ485T 2 Communication module equipped with a 3-wire EIA RS-
485 port with a terminal.
Note: This module is only available for the Modular
controllers. When the module is attached, the controller
cannot have an Operator Display expansion module.
TWD USE 10AE 119

Communications
Nominal Cabling Nominal cable connections are illustrated below for both the EIA RS-232 and the
EIA RS-485 types.

TWDNAC232D 2 Communication adapter equipped with a 3-wire EIA RS-
232 port with a miniDIN connector.
Note: This adapter is only available for the Compact 16,
24 and 40 I/O controllers and the Operator Display
expansion module.

TWDNAC485D 2 Communication adapter equipped with a 3-wire EIA RS-
485 port with a miniDIN connector.
Note: This adapter is only available for the Compact 16,
24 and 40 I/O controllers and the Operator Display
expansion module.

TWDNAC485T 2 Communication adapter equipped with a 3-wire EIA RS-
485 port with a terminal.
Note: This adapter is only available for the Compact 16,
24 and 40 I/O controllers and the Operator Display
expansion module.

TWDXCPODM 2 Operator Display expansion module equipped with a 3-
wire EIA RS-232 port with a miniDIN connector, a 3-wire
EIA RS-485 port with a miniDIN connector and a 3-wire
EIA RS-485 port with a terminal.
Note: This module is only available for the Modular
controllers. When the module is attached, the controller
cannot have a Communication expansion module.

Note: You can only check the presence and configuration (RS232 or RS485) of
port 2 at power-up or reset by the firmware executive program.

Remote Port Specifications

Note: If port 1 is used on the Twido controller, the DPT signal on pin 5 must be tied
to 0V on pin 7. This signifies to the Twido controller that the communications
through port 1 is ASCII and is not the protocol used to communicate with the
TwidoSoft software.
120 TWD USE 10AE

Communications
Cable connections to each device are illustrated below.

Software
Configuration

To configure the controller to use a serial connection to send and receive characters
using the ASCII protocol, you must:

TXD RXD GND

Twido
controller

RS-232 EIA cable

TXD RXD GND

Remote
peripheral

A(+) B(-) GND DPT

RS-485 EIA cable

A(+) B(-) GND
...

A(+) B(-) GND

Remote
peripheral

Remote
peripheral

Twido
controller

3 4 7

1 2 7 5

Mini-DIN connection

Terminal block connection

A(+) B(-) 0V

Master
controller

A(+) B(-) 0V

Remote
peripheral

A(+) B(-) 0V

Remote
peripheral

A B SG

Step Description

1 Configure the serial port for ASCII using TwidoSoft.

2 Create in your application a transmission/reception table that will be used by
the EXCHx instruction.
TWD USE 10AE 121

Communications
Configuring the
Port

A Twido controller can use its primary port 1 or an optionally configured port 2 to use
the ASCII protocol. To configure a serial port for ASCII:

Configuring the
Transmission/
Reception table
for ASCII mode

The maximum size of the transmitted and/or received frames is 256 bytes. The word
table associated with the EXCHx instruction is composed of the transmission and
reception control tables.

Control table The Length byte contains the length of the transmission table in bytes (250 max.),
which is overwritten by the number of characters received at the end of the
reception, if reception is requested.
The Command byte must contain one of the following:

0: Transmission only
1: Send/receive
2: Reception Only

Transmission/
reception tables

When in Transmit Only mode, the Control and Transmission tables are filled in prior
to executing the EXCHx instruction, and can be of type %KW or %MW. No space is
required for the reception of characters in Transmission only mode. Once all bytes
are transmitted, %MSGx.D is set to 1, and a new EXCHx instruction can be
executed.

Step Action

1 Define any additional communication adapters or modules configured to the
base.

2 Right-click on the port and click Edit Controller Comm Setup... and change
serial port type to "ASCII".

3 Set the associated communication parameters.

Most significant byte Least significant byte

Control table Command Length (transmission/reception)

Reserved (0) Reserved (0)

Transmission table Transmitted Byte 1 Transmitted Byte 2

... ...

... Transmitted Byte n

Transmitted Byte n+1

Reception table Received Byte 1 Received Byte 2

... ...

... Received Byte p

Received Byte p+1
122 TWD USE 10AE

Communications
When in Transmit/Receive mode, the Control and Transmission tables are filled in
prior to executing the EXCHx instruction, and must be of type %MW. Space for up
to 256 reception bytes is required at the end of the Transmission table. Once all
bytes are transmitted, the Twido controller switches to reception mode and waits to
receive any bytes.
When in Reception only mode, the Control table is filled in prior to executing the
EXCHx instruction, and must be of type %MW. Space for up to 256 reception bytes
is required at the end of the Control table. The Twido controller immediately enters
the reception mode and waits to receive any bytes.
Reception ends when the end-of-frame byte is received, or the Reception table is
full. In this case an error (receive table overflowed) appears in the word %SW63 and
%SW64. If a non-zero time out is configured, reception ends when the time out is
completed. If a zero time out value is selected, there is no reception time out.
Therefore to stop reception, the %MSGx.R input must be activated.

Message
Exchange

The language offers two services for the communication:
EXCHx instruction: to transmit/receive messages
%MSGx Function Block: to control the message exchanges.

The Twido controller uses the protocol configured for that port when processing an
EXCHx instruction.

EXCHx
Instruction

The EXCHx instruction allows the Twido controller to send and/or receive
information to/from ASCII devices. The user defines a table of words (%MWi:L or
%KWi:L) containing control information and the data to be sent and/or received (up
to 256 bytes in transmission and/or reception). The format for the word table is
described earlier.
A message exchange is performed using the EXCHx instruction:

The Twido controller must finish the exchange from the first EXCHx instruction
before a second can be launched. The %MSGx function block must be used when
sending several messages.

Note: Each communications port can be configured for different protocols or the
same. The EXCHx instruction or %MSGx function block for each communications
port is accessed by appending the port number (1 or 2).

Syntax: [EXCHx %MWi:L]
where: x = port number (1 or 2)

L = number of words in the control words and transmission and
reception tables
TWD USE 10AE 123

Communications
The processing of the EXCHx list instruction occurs immediately, with any
transmissions started under interrupt control (reception of data is also under
interrupt control), which is considered background processing.

%MSGx Function
Block

The use of the %MSGx function block is optional; it can be used to manage data
exchanges. The %MSGx function block has three purposes:

Communications error checking
The error checking verifies that the parameter L (length of the Word table)
programmed with the EXCHx instruction is large enough to contain the length of
the message to be sent. This is compared with the length programmed in the
least significant byte of the first word of the word table.
Coordination of multiple messages
To ensure the coordination when sending multiple messages, the %MSGx
function block provides the information required to determine when transmission
of a previous message is complete.
Transmission of priority messages
The %MSGx function block allows current message transmissions to be stopped
in order to allow the immediate sending of an urgent message.

The %MSGx function block has one input and two outputs associated with it:

Input/Output Definition Description

R Reset input Set to 1: re-initializes communication or
resets block (%MSGx.E = 0 and %MSGx.D =
1).

%MSGx.D Communication
complete

0: Request in progress.
1: communication done if end of
transmission, end character received, error,
or reset of block.

%MSGx.E Error 0: message length OK and link OK.
1: if bad command, table incorrectly
configured, incorrect character received
(speed, parity, and so on.), or reception table
full.
124 TWD USE 10AE

Communications
Limitations It is important to note the following limitations:
Port 2 availability and type (see %SW7) is checked only at power-up or reset
Any message processing on Port 1 is aborted when the TwidoSoft is connected
EXCHx or %MSG can not be processed on a port configured as Remote Link
EXCHx aborts active Modbus Slave processing
Processing of EXCHx instructions is not re-tried in the event of an error
Reset input (R) can be used to abort EXCHx instruction reception processing
EXCHx instructions can be configured with a time out to abort reception
Multiple messages are controlled via %MSGx.D

Error and
Operating Mode
Conditions

If an error occurs when using the EXCHx instruction, bits %MSGx.D and %MSGx.E
are set to 1 and system word %SW63 contains the error code for Port 1, and
%SW64 contains the error code for Port 2.

Consequence of
Controller
Restart on the
Communication

If a controller restarts, one of the following events happens:
A cold start (%S0 = 1) forces a re-initialization of the communications.
A warm start (%S1 = 1) forces a re-initialization of the communications.
In Stop, the controller stops all ASCII communications.

System
Words

Use

%SW63 EXCH1 error code:
0 - operation was successful
1 – number of bytes to be transmitted is too great (> 250)
2 - transmission table too small
3 - word table too small
4 - receive table overflowed
5 - time-out elapsed
6 - transmission error
7 - bad command within table
8 - selected port not configured/available
9 - reception error
10 - cannot use %KW if receiving
11 - transmission offset larger than transmission table
12 - reception offset larger than reception table
13 - controller stopped EXCH processing

%SW64 EXCH2 error code: See %SW63.
TWD USE 10AE 125

Communications
ASCII Link
Example

To configure an ASCII Link, you must:
1. Configure the hardware.
2. Connect the ASCII communications cable.
3. Configure the port.
4. Write an application.
5. Initialize the Animation Table Editor.
The diagram below illustrates the use of the ASCII communications with a Terminal
Emulator on a PC.

Step 1: Configure the Hardware:

The hardware configuration is two serial connections from the PC to a Twido
controller with an optional EIA RS-232 Port 2. On a Modular controller, the optional
Port 2 is a TWDNOZ232D or a TWDNAC232D in the TWDXCPODM. On the
Compact controller, the optional Port 2 is a TWDNAC232D.
To configure the controller, connect the TSXPCX1031 cable (not shown) to Port 1
of the Twido controller. Next, connect the cable to the COM 1 port of the PC. Be sure
that the switch is in position 2. Finally, connect the COM 2 port of the PC to the
optional EIA RS-232 Port 2 on the Twido controller. The wiring schematic is provided
in the next step.

Step 2: ASCII Communications Cable (EIA RS-232) Wiring Schematic:

The minimum number of wires used in an ASCII communications cable is 3. Cross
the transmit and receive signals.

Note: On the PC side of the cable, additional connections (such as Data Terminal
Ready and Data Set Ready) may be needed to satisfy the handshaking. No
additional connections are required to satisfy the Twido controller.

Serial COM 2RS-232 EIA Port 2Twido
controller

TXD RXD GNDTXD RXD GND

Twido
controller

Personal
computer

3 4 7 3 2 5
126 TWD USE 10AE

Communications
Step 3: Port Configuration:

Use a simple Terminal Emulator application on the PC to configure the COM2 port
and to ensure that there is no flow control.
Use TwidoSoft to configure the controller’s port. First, the hardware option is
configured. In this example, the TWDNOZ232D is added to the Modular base
controller.
Second, the Controller Communication Setup is initialized with all of the same
parameter settings as the Terminal Emulator on the PC. In this example, capital
letter "A" is chosen for the "End of Frame" character, in order to terminate character
reception. A 10 second time out for the "Response Timeout" parameter is chosen.
Only one of these two parameters will be invoked, depending on whichever one
happens first.

Step 4: Write the application:

Use TwidoSoft to create an application program with three primary parts. First,
initialize the Control and Transmission tables to use for the EXCH instruction. In this
example, a command is set up to both send and receive data. The amount of data
to send is set to 4 bytes and is initialized to the characters: "O", "K", CR, LF.

Data: 8 Bit
Parity: None
Stop: 1 Bit
End of Frame: 65

Port: 2
Type: ASCII
Baud Rate: 19200

Terminal Emulator on a PC

Port: COM2
Baud Rate: 19200
Data: 8 Bit
Parity: None
Stop: 1 Bit
Flow control: None

Hardware -> Add Option
TWDNOZ232D

Hardware => Adjust Controller Comm. Setting

Response Timeout: 100 x 100 ms

LD 1
[%MW10 := 16#0104]
[%MW11 := 16#0000]
[%MW12 := 16#4F4B]
[%MW13 := 16#0A0D]
LD 1
AND %MSG2.D
[EXCH2 %MW10:8]
LD %MSG2.E
ST %Q0.0
END
TWD USE 10AE 127

Communications
Next, check the status bit associated with %MSG2 and issue the EXCH2 instruction
only if the port is ready. For the EXCH2 instruction, a value of 8 words is specified.
There are 2 Control words (%MW10 and %MW11), 2 words to be used for transmit
information (%MW12 and %MW13), and 4 words to receive data (%MW14 through
%MW17).
Finally, the error status of the %MSG2 is sensed and stored on the first output bit on
the local base controller I/O. Additional error checking using %SW64 could also be
added to make this more accurate.

Step 5: Initialize the Animation Table Editor:

The final step is to download this application controller and run it. Initialize an
Animation Table Editor to animate and display the %MW10 through %MW17 words.
On the Terminal Emulator, the characters "O"-"K"-CR-LF are displayed. The
characters "O"-"K"-CR-LF can be displayed as many times as the EXCH block
response timeout has elapsed and the new EXCH block has been started. On the
Terminal Emulator, type "T"-"W"-"I"-"D"-"O"-" "-"A". This is exchanged with the
Twido controller and displayed in the Animation Table Editor.

Address Current Retained Format
1 %MW10 0104 Hexadecimal
2 %MW11 0000 Hexadecimal
3 %MW12 4F4B Hexadecimal
4 %MW13 0A0D Hexadecimal
5 %MW14 TW ASCII
6 %MW15 ID ASCII
7 %MW16 O ASCII
8 %MW17 A ASCII
128 TWD USE 10AE

Communications
Modbus Communications

Introduction The Modbus protocol is a master-slave protocol that allows for one, and only one,
master to request responses from slaves, or to act based on the request. The master
can address individual slaves, or can initiate a broadcast message to all slaves.
Slaves return a message (response) to queries that are addressed to them
individually. Responses are not returned to broadcast queries from the master.

Hardware
Configuration

A Modbus link can be established on either the EIA RS-232 or EIA RS-485 port and
can run on as many as two communications ports at a time. Each of these ports can
be assigned its own Modbus address, using system bit %S101 and system words
%SW101 and %SW102 (See System Bits (%S), p. 510). (See also System Words
(%SW), p. 517).
The table below lists the devices that can be used:

Remote Port Specifications

TWDLC•A10/16/24DRF,
TWDLCA•40DRF,
TWDLMDA20/40DTK,
TWDLMDA20DRT

1 Base controller supporting a 3-wire EIA RS-485 port with
a miniDIN connector.

TWDNOZ232D 2 Communication module equipped with a 3-wire EIA RS-
232 port with a miniDIN connector.
Note: This module is only available for the Modular
controllers. When the module is attached, the controller
cannot have an Operator Display expansion module.

TWDNOZ485D 2 Communication module equipped with a 3-wire EIA RS-
485 port with a miniDIN connector.
Note: This module is only available for the Modular
controllers. When the module is attached, the controller
cannot have an Operator Display expansion module.

TWDNOZ485T 2 Communication module equipped with a 3-wire EIA RS-
485 port with a terminal.
Note: This module is only available for the Modular
controllers. When the module is attached, the controller
cannot have an Operator Display expansion module.

TWDNAC232D 2 Communication adapter equipped with a 3-wire EIA RS-
232 port with a miniDIN connector.
Note: This adapter is only available for the Compact 16,
24 and 40 I/O controllers and the Operator Display
expansion module.
TWD USE 10AE 129

Communications
Nominal Cabling Nominal cable connections are illustrated below for both the EIA RS-232 and the
EIA RS-485 types.

TWDNAC485D 2 Communication adapter equipped with a 3-wire EIA RS-
485 port with a miniDIN connector.
Note: This adapter is only available for the Compact 16,
24 and 40 I/O controllers and the Operator Display
expansion module.

TWDNAC485T 2 Communication adapter equipped with a 3-wire EIA RS-
485 port with a terminal connector.
Note: This adapter is only available for the Compact 16,
24 and 40 I/O controllers and the Operator Display
expansion module.

TWDXCPODM 2 Operator Display expansion module equipped with a 3-
wire EIA RS-232 port with a miniDIN connector, a 3-wire
EIA RS-485 port with a miniDIN connector and a 3-wire
EIA RS-485 port with a terminal.
Note: This module is only available for the Modular
controllers. When the module is attached, the controller
cannot have a Communication expansion module.

Note: The presence and configuration (RS232 or RS485) of Port 2 is checked at
power-up or at reset by the firmware executive program.

Remote Port Specifications

Note: If port 1 is used on the Twido controller, the DPT signal on pin 5 must be tied
to 0V on pin 7. This signifies to the Twido controller that the communications
through port 1 is Modbus and is not the protocol used to communicate with the
TwidoSoft software.
130 TWD USE 10AE

Communications
The cable connections made to each remote device are shown below.

Software
Configuration

To configure the controller to use a serial connection to send and receive characters
using the Modbus protocol, you must:

Configuring the
Port

A Twido controller can use its primary port 1 or an optionally configured port 2 to use
the Modbus protocol. To configure a serial port for Modbus:

TXD RXD GND

Twido
controller

RS-232 EIA cable

TXD RXD GND

Remote
peripheral

A(+) B(-) GND DPT

RS-485 EIA cable

A(+) B(-) GND
...

A(+) B(-) GND

Remote
peripheral

Remote
peripheral

Twido
controller

3 4 7

1 2 7 5

Mini-DIN connection

Terminal block connection

A(+) B(-) 0V

Remote
controller

A(+) B(-) 0V

Master
controller

A(+) B(-) 0V

Remote
controller

A B SG

Step Description

1 Configure the serial port for Modbus using TwidoSoft.

2 Create in your application a transmission/reception table that will be used by the
EXCHx instruction.

Step Action

1 Define any additional communication adapters or modules configured to the base.

2 Right-click on the port and click Edit Controller Comm Setup... and change serial
port type to "Modbus".

3 Set the associated communication parameters.
TWD USE 10AE 131

Communications
Modbus Master Modbus master mode allows the controller to send a Modbus query to a slave, and
to wait for the response. The Modbus Master mode is only supported via the EXCHx
instruction. Both Modbus ASCII and RTU are supported in Modbus Master mode.
The maximum size of the transmitted and/or received frames is 250 bytes.
Moreover, the word table associated with the EXCHx instruction is composed of the
control, transmission and reception tables.

Control table The Length byte contains the length of the transmission table (maximum 250
bytes), which is overwritten by the number of characters received at the end of the
reception, if reception is requested.
This parameter is the length in bytes of the transmission table. If the Tx Offset
parameter is equal to 0, this parameter will be equal to the length of the transmission
frame. If the Tx Offset parameter is not equal to 0, one byte of the transmission table
(indicated by the offset value) will not be transmitted and this parameter is equal to
the frame length itself plus 1.
The Command byte in case of Modbus RTU request (except for broadcast) must
always equal to 1 (Tx and Rx).
The Tx Offset byte contains the rank (1 for the first byte, 2 for the second byte, and
so on) within the Transmission Table of the byte to ignore when transmitting the
bytes. This is used to handle the issues associated with byte/word values within the
Modbus protocol. For example, if this byte contains 3, the third byte would be
ignored, making the fourth byte in the table the third byte to be transmitted.

Most significant byte Least significant byte

Control table Command Length (Transmission/
Reception)

Reception offset Transmission offset

Transmission table Transmitted Byte 1 Transmitted Byte 2

... ...

... Transmitted Byte n

Transmitted Byte n+1

Reception table Received Byte 1 Received Byte 2

... ...

... Received Byte p

Received Byte p+1

Note: In addition to queries to invidual slaves, the Modbus master controller can
initiate a broadcast query to all slaves. The command byte in case of a boradcast
query must be set to 00, while the slave address must be set to 0.
132 TWD USE 10AE

Communications
The Rx Offset byte contains the rank (1 for the first byte, 2 for the second byte, and
so on) within the Reception Table to add when transmitting the packet. This is used
to handle the issues associated with byte/word values within the Modbus protocol.
For example, if this byte contains 3, the third byte within the table would be filled with
a ZERO, and the third byte was actually received would be entered into the fourth
location in the table.

Transmission/
reception tables

When using either mode (Modbus ASCII or Modbus RTU), the Transmission table
is filled with the request prior to executing the EXCHx instruction. At execution time,
the controller determines what the Data Link Layer is, and performs all conversions
necessary to process the transmission and response. Start, end, and check
characters are not stored in the Transmission/Reception tables.
Once all bytes are transmitted, the controller switches to reception mode and waits
to receive any bytes.
Reception is completed in one of several ways:

time out on a character or frame has been detected,
end-of-frame character received in ASCII mode,
the Reception table is full.

The Transmitted byte X entries contain Modbus protocol (RTU encoding) data that
is to be transmitted. If the communications port is configured for Modbus ASCII, the
correct framing characters are appended to the transmission. The first byte contains
the device address (specific or broadcast), the second byte contains the function
code, and the rest contain the information associated with that function code.

The Received Bytes X contain Modbus protocol (RTU encoding) data that is to be
received. If the communications port is configured for Modbus ASCII, the correct
framing characters are removed from the response. The first byte contains the
device address, the second byte contains the function code (or response code), and
the rest contain the information associated with that function code.

Note: This is a typical application, but does not define all the possibilities. No
validation of the data being transmitted will be performed.

Note: This is a typical application, but does not define all the possibilities. No
validation of the data being received will be performed, except for checksum
verification.
TWD USE 10AE 133

Communications
Modbus Slave The Modbus slave mode allows the controller to respond to standard Modbus
queries from a Modbus master.
When the TSXPCX1031 cable is attached to the controller, TwidoSoft
communications are started at the port, temporarily disabling the communications
mode that was running prior to the cable being connected.
The Modbus protocol supports two Data Link Layer formats: ASCII and RTU. Each
is defined by the Physical Layer implementation, with ASCII using 7 data bits, and
RTU using 8 data bits.
When using Modbus ASCII mode, each byte in the message is sent as two ASCII
characters. The Modbus ASCII frame begins with a start character (':'), and can end
with two end characters (CR and LF). The end-of-frame character defaults to 0x0A
(line feed), and the user can modify the value of this byte during configuration. The
check value for the Modbus ASCII frame is a simple two's complement of the frame,
excluding the start and end characters.
Modbus RTU mode does not reformat the message prior to transmitting; however,
it uses a different checksum calculation mode, specified as a CRC.
The Modbus Data Link Layer has the following limitations:

Address 1-247
Bits: 128 bits on request
Words: 125 words of 16 bits on request

Message
Exchange

The language offers two services for communication:
EXCHx instruction: to transmit/receive messages
%MSGx Function Block: to control the message exchanges.

The Twido controller uses the protocol configured for that port when processing an
EXCHx instruction.

EXCHx
Instruction

The EXCHx instruction allows the Twido controller to send and/or receive
information to/from Modbus devices. The user defines a table of words (%MWi:L)
containing control information and the data to be sent and/or received (up to 250
bytes in transmission and/or reception). The format for the word table is described
earlier.
A message exchange is performed using the EXCHx instruction:

Note: Each communications port can be configured for different protocols or the
same. The EXCHx instruction or %MSGx function block for each communications
port is accessed by appending the port number (1 or 2).

Syntax: [EXCHx %MWi:L]
where: x = port number (1 or 2)

L = number of words in the control words, transmission and reception tables
134 TWD USE 10AE

Communications
The Twido controller must finish the exchange from the first EXCHx instruction
before a second can be launched. The %MSGx function block must be used when
sending several messages.
The processing of the EXCHx list instruction occurs immediately, with any
transmissions started under interrupt control (reception of data is also under
interrupt control), which is considered background processing.

%MSGx Function
Block

The use of the %MSGx function block is optional; it can be used to manage data
exchanges. The %MSGx function block has three purposes:

Communications error checking
The error checking verifies that the parameter L (length of the Word table)
programmed with the EXCHx instruction is large enough to contain the length of
the message to be sent. This is compared with the length programmed in the
least significant byte of the first word of the word table.
Coordination of multiple messages
To ensure the coordination when sending multiple messages, the %MSGx
function block provides the information required to determine when transmission
of a previous message is complete.
Transmission of priority messages
The %MSGx function block allows current message transmissions to be stopped
in order to allow the immediate sending of an urgent message.

The %MSGx function block has one input and two outputs associated with it:

Limitations It is important to note the following limitations:
Port 2 presence and configuration (RS232 or RS485) is checked at power-up or
reset
Any message processing on Port 1 is aborted when the TwidoSoft is connected
EXCHx or %MSG can not be processed on a port configured as Remote Link
EXCHx aborts active Modbus Slave processing
Processing of EXCHx instructions is not re-tried in the event of an error

Input/Output Definition Description

R Reset input Set to 1: re-initializes communication or
resets block (%MSGx.E = 0 and %MSGx.D =
1).

%MSGx.D Communication
complete

0: request in progress.
1: communication done if end of
transmission, end character received, error,
or reset of block.

%MSGx.E Error 0: message length OK and link OK.
1: if bad command, table incorrectly
configured, incorrect character received
(speed, parity, and so on.), or reception table
full.
TWD USE 10AE 135

Communications
Reset input (R) can be used to abort EXCHx instruction reception processing
EXCHx instructions can be configured with a time out to abort reception
Multiple messages are controlled via %MSGx.D

Error and
Operating Mode
Conditions

If an error occurs when using the EXCHx instruction, bits %MSGx.D and %MSGx.E
are set to 1 and system word %SW63 contains the error code for Port 1, and
%SW64 contains the error code for Port 2.

Master
Controller
Restart

If a master/slave controller restarts, one of the following events happens:
A cold start (%S0 = 1) forces a re-initialization of the communications.
A warm start (%S1 = 1) forces a re-initialization of the communications.
In Stop mode, the controller stops all Modbus communications.

System
Words

Use

%SW63 EXCH1 error code:
0 - operation was successful
1 – number of bytes to be transmitted is too great (> 250)
2 - transmission table too small
3 - word table too small
4 - receive table overflowed
5 - time-out elapsed
6 - transmission
7 - bad command within table
8 - selected port not configured/available
9 - reception error
10 - can not use %KW if receiving
11 - transmission offset larger than transmission table
12 - reception offset larger than reception table
13 - controller stopped EXCH processing

%SW64 EXCH2 error code: See %SW63.
136 TWD USE 10AE

Communications
Modbus Link
Example 1

To configure a Modbus Link, you must:
1. Configure the hardware.
2. Connect the Modbus communications cable.
3. Configure the port.
4. Write an application.
5. Initialize the Animation Table Editor.
The diagrams below illustrate the use of Modbus request code 3 to read a slave’s
output words. This example uses two Twido Controllers.

Step 1: Configure the Hardware:

The hardware configuration is two Twido controllers. One will be configured as the
Modbus Master and the other as the Modbus Slave.

To configure each controller, connect the TSXPCX1031 cable to Port 1 of the
controller.

Next, connect the cable to the COM 1 port of the PC. Be sure that the cable is in
switch position 2. Download and monitor the application. Repeat procedure for
second controller.

Note: In this example, each controller is configured to use EIA RS-485 on Port 1
and an optional EIA RS-485 Port 2. On a Modular controller, the optional Port 2 can
be either a TWDNOZ485D or a TWDNOZ485T, or if you use TWDXCPODM, it can
be either a TWDNAC485D or a TWDNAC485T. On a Compact controller, the
optional Port 2 can be either a TWDNAC485D or a TWDNAC485T.

Note: The TSXPCX1031 can only be connected to one controller at a time, on RS-
485 EIA port 1 only.

To serial COM 1

1
2

3
0

RS-485 EIA Port 11 Controller
Master
Module

2 Controller
Slave
Modbus

RS-485 EIA Port 1

TSXPCX1031

RS-485 EIA Port 2

RS-485 EIA Port 2
TWD USE 10AE 137

Communications
Step 2:Connect the Modbus Communications Cable:

The wiring in this example demonstrates a simple point to point connection. The
three signals A(+), B(-), and 0V are wired according to the diagram.
If using Port 1 of the Twido controller, the DPT signal (pin 5) must be tied to 0V (pin
7). This conditioning of DPT determines if TwidoSoft is connected. When tied to the
ground, the controller will use the port configuration set in the application to
determine the type of communication.

Step 3:Port Configuration:

In both the master and slave applications, the optional EIA RS-485 ports are
configured. Ensure that the controller's communication parameters are modified in
Modbus protocol and at different addresses.
In this example, the master is set to an address of 1 and the slave to 2. The number
of bits is set to 8, indicating that we will be using Modbus RTU mode. If this had been
set to 7, then we would be using Modbus-ASCII mode. The only other default
modified was to increase the response timeout to 1 second.

A(+) B(-) 0V A(+) B(-) GND

Twido
Modbus Slave

Twido
Modbus Master

1 2 7

Mini-DIN connection

Terminal block connection

A(+) B(-) 0V

Twido
Modbus Master

A(+) B(-) 0V

Twido
Modbus Slave

A B SG

Data: 8 Bit
Parity: None
Stop: 1 Bit
End of Frame: 65

Port: 2
Type: Modbus

Baud Rate: 19200

Hardware -> Add Option
TWDNOZ485-

Hardware => Controller Comm. Setting

Response Timeout: 100 x 100 ms

Data: 8 Bit
Parity: None
Stop: 1 Bit
End of Frame: 65

Port: 2
Type: Modbus

Baud Rate: 19200

Hardware -> Add Option
TWDNOZ485-

Hardware => Controller Comm. Setting

Response Timeout: 10 x 100 ms

Frame Timeout: 10 ms Frame Timeout: 10 ms

Address: 1 Address: 2
138 TWD USE 10AE

Communications
Step 4: Write the application:

Using TwidoSoft, an application program is written for both the master and the slave.
For the slave, we simply write some memory words to a set of known values. In the
master, the word table of the EXCHx instruction is initialized to read 4 words from
the slave at Modbus address 2 starting at location %MW0.

Before executing the EXCH2 instruction, the application checks the communication
bit associated with %MSG2. Finally, the error status of the %MSG2 is sensed and
stored on the first output bit on the local base controller I/O. Additional error checking
using %SW64 could also be added to make this more accurate.

Step 5:Initialize the animation table editor in the master:

Note: Since Modbus RTU mode was selected, the "End of Frame" parameter was
ignored.

Note: Notice the use of the RX offset set in %MW1 of the Modbus master. The
offset of three will add a byte (value = 0) at the third position in the reception area
of the table. This aligns the words in the master so that they fall correctly on word
boundaries. Without this offset, each word of data would be split between two
words in the exchange block. This offset is used for convenience.

[%MW0 := 16#6566]
[%MW1 := 16#6768]
[%MW2 := 16#6970]
[%MW3 := 16#7172]
END

LD 1
[%MW0 := 16#0106]
[%MW1 := 16#0300]
[%MW2 := 16#0203]
[%MW3 := 16#0000]
[%MW4 := 16#0004]
LD 1
AND %MSG2.D
[EXCH2 %MW0:11]
LD %MSG2.E
ST %Q0.0
END

LD 1

Address Current Retained Format
1 %MW5 0203 0000 Hexadecimal
2 %MW6 0008 0000 Hexadecimal
3 %MW7 6566 0000 Hexadecimal
4 %MW8 6768 0000 Hexadecimal
5 %MW9 6970 0000 Hexadecimal
6 %MW10 7172 0000 Hexadecimal
TWD USE 10AE 139

Communications
After downloading and setting each controller to run, open an animation table on the
master. Examine the response section of the table to check that the response code
is 3 and that the correct number of bytes was read. Also in this example, note that
the words read from the slave (beginning at %MW7) are aligned correctly with the
word boundaries in the master.

Modbus Link
Example 2

The diagram below illustrates the use of Modbus request 16 to write output words to
a slave. This example uses two Twido Controllers.
Step 1: Configure the Hardware:

The hardware configuration is identical to the previous example.
Step 2: Connect the Modbus Communications Cable (RS-485):

The Modbus communications cabling is identical to the previous example.

To serial COM 1

1
2

3
0

RS-485 EIA Port 11 Controller
Modbus
master

2 Controller
Modbus
slave

RS-485 EIA Port 1

TSXPCX1031

RS-485 EIA Port 2

RS-485 EIA Port 2

A(+) B(-) 0V A(+) B(-) GND

Twido
Modbus Slave

Twido
Modbus Master

1 2 7

Mini-DIN connection

Terminal block connection

A(+) B(-) 0V

Twido
Modbus Master

A(+) B(-) 0V

Twido
Modbus Slave

A B SG
140 TWD USE 10AE

Communications
Step 3: Port Configuration:

The port configurations are identical to those in the previous example.
Step 4: Write the application:

Using TwidoSoft, an application program is created for both the master and the
slave. For the slave, write a single memory word %MW18. This will allocate space
on the slave for the memory addresses from %MW0 through %MW18. Without
allocating the space, the Modbus request would be trying to write to locations that
did not exist on the slave.
In the master, the word table of the EXCH2 instruction is initialized to read 4 bytes
to the slave at Modbus address 2 at the address %MW16 (10 hexadecimal).

Note: Notice the use of the TX offset set in %MW1 of the Modbus master
application. The offset of seven will suppress the high byte in the sixth word (the
value 00 hexadecimal in %MW5). This works to align the data values in the
transmission table of the word table so that they fall correctly on word boundaries.

Data: 8 Bit
Parity: None
Stop: 1 Bit
End of Frame: 65

Port: 2
Type: Modbus

Baud Rate: 19200

Hardware -> Add Option
TWDNOZ485-

Hardware => Controller Comm. Setting

Response Timeout: 100 x 100 ms

Data: 8 Bit
Parity: None
Stop: 1 Bit
End of Frame: 65

Port: 2
Type: Modbus

Baud Rate: 19200

Hardware -> Add Option
TWDNOZ485-

Hardware => Controller Comm. Setting

Response Timeout: 10 x 100 ms

Frame Timeout: 10 ms Frame Timeout: 10 ms

Address: 1 Address: 2

LD 1
[%MW18 := 16#FFFF]
END

LD 1
[%MW0 := 16#010C]
[%MW1 := 16#0007]
[%MW2 := 16#0210]
[%MW3 := 16#0010]
[%MW4 := 16#0002]

LD 1
AND %MSG2.D
[EXCH2 %MW0:11]
LD %MSG2.E
ST %Q0.0
END

[%MW5 := 16#0004]
[%MW6 := 16#6566]
[%MW7 := 16#6768]
TWD USE 10AE 141

Communications
Before executing the EXCH2 instruction, the application checks the communication
bit associated with %MSG2. Finally, the error status of the %MSG2 is sensed and
stored on the first output bit on the local base controller I/O. Additional error checking
using %SW64 could also be added to make this more accurate.
Step 5:Initialize the Animation Table Editor:
Create the following animation table on the master:

Create the following animation table on the slave:

After downloading and setting each controller to run, open an animation table on the
slave controller. The two values in %MW16 and %MW17 are written to the slave. In
the master, the animation table can be used to examine the reception table portion
of the exchange data. This data displays the slave address, the response code, the
first word written, and the number of words written starting at %MW8 in the example
above.

Address Current Retained Format
1 %MW0 010C 0000 Hexadecimal
2 %MW1 0007 0000 Hexadecimal
3 %MW2 0210 0000 Hexadecimal
4 %MW3 0010 0000 Hexadecimal
5 %MW4 0002 0000 Hexadecimal
6 %MW5 0004 0000 Hexadecimal
7 %MW6 6566 0000 Hexadecimal
8 %MW7 6768 0000 Hexadecimal
9 %MW8 0210 0000 Hexadecimal

10 %MW9 0010 0000 Hexadecimal
11 %MW10 0004 0000 Hexadecimal

Address Current Retained Format
1 %MW16 6566 0000 Hexadecimal
2 %MW17 6768 0000 Hexadecimal
142 TWD USE 10AE

Communications
Standard Modbus Requests

Introduction These requests are used to exchange memory words or bits between remote
devices. The table format is the same for both RTU and ASCII modes.

Modbus Master:
Read N Bits

The following table represents requests 01 and 02.

(*) This byte also receives the length of the string transmitted after response

Format Reference number

Bit %Mi

Word %MWi

Table
Index

Most significant byte Least significant byte

Control table 0 01 (Transmission/
reception)

06 (Transmission length) (*)

1 00 (Reception offset) 00 (Transmission offset)

Transmission table 2 Slave@(1..247) 01 or 02 (Request code)

3 Number of the first bit to read

4 N = Number of bits to read

Reception table
(after response)

5 Slave@(1..247) 01 (Response code)

6 Number of data bytes transmitted (1 byte by bit)

7 First byte read (value = 00
or 01)

Second byte read (if N>1)

8 Third byte read (if N>1)

...

(N/2)+6 Byte N read (if N>1)
TWD USE 10AE 143

Communications
Modbus Master:
Read N Words

The following table represents requests 03 and 04.

(*) This byte also receives the length of the string transmitted after response

Table
Index

Most significant byte Least significant byte

Control table 0 01 (Transmission/
reception)

06 (Transmission length) (*)

1 03 (Reception Offset) 00 (Transmission offset)

Transmission table 2 Slave@(1..247) 03 or 04 (Request code)

3 Number of the first word to read

4 N = Number of words to read

Reception table
(after response)

5 Slave@(1..247) 03 (Response code)

6 00 (byte added by Rx
Offset action)

2*N (number of bytes read)

7 First word read

8 Second word read (if N>1)

...

N+6 Word N read (if N>2)

Note: The Rx offset of three will add a byte (value = 0) at the third position in the
reception table. This ensures a good positioning of the number of bytes read and
of the read words’ values in this table.
144 TWD USE 10AE

Communications
Modbus Master:
Write Bit

This table represents Request 05.

(*) This byte also receives the length of the string transmitted after response

Table
Index

Most significant byte Least significant byte

Control table 0 01 (Transmission/
reception)

06 (Transmission length) (*)

1 00 (Reception offset) 00 (Transmission offset)

Transmission table 2 Slave@(1..247) 05 (Request code)

3 Number of the bit to write

4 Bit value to write

Reception table
(after response)

5 Slave@(1..247) 05 (Response code)

6 Number of the bit written

7 Value written

Note:
This request does not need the use of offset.
The response frame is the same as the request frame here (in a normal case).
For a bit to write 1, the associated word in the transmission table must contain
the value FF00H, and 0 for the bit to write 0.
TWD USE 10AE 145

Communications
Modbus Master:
Write Word

This table represents Request 06.

(*) This byte also receives the length of the string transmitted after response

Table
Index

Most significant byte Least significant byte

Control table 0 01 (Transmission/
reception)

06 (Transmission length) (*)

1 00 (Reception offset) 00 (Transmission offset)

Transmission table 2 Slave@(1..247) 06 (Request code)

3 Number of the word to write

4 Word value to write

Reception table
(after response)

5 Slave@(1..247) 06 (Response code)

6 Number of the word written

7 Value written

Note:
This request does not need the use of offset.
The response frame is the same as the request frame here (in a normal case).
146 TWD USE 10AE

Communications
Modbus Master:
Write of N Bits

This table represents Request 15.

Table
Index

Most significant byte Least significant byte

Control table 0 01 (Transmission/
reception)

8 + number of bytes
(transmission)

1 00 (Reception Offset) 07 (Transmission offset)

Transmission table 2 Slave@(1..247) 15 (Request code)

3 Number of the first bit to write

4 N1 = Number of bits to write

5 00 (byte not sent, offset
effect)

N2 = Number of data bytes

to write

6 Value of the second byte Value of the second byte

Control table 7 Value of the third byte Value of the fourth byte

...

Transmission table 6+(N2/2) Value of the N2nd byte

Reception table
(after response)

Slave@(1..247) 15 (Response code)

Number of the first bit written

Number of bits written (= N1)

Note:
The Tx Offset=7 will suppress the 7th byte in the sent frame. This also allows a
good correspondence of words’ values in the transmission table.
TWD USE 10AE 147

Communications
Modbus Master:
Write of N Words

This table represents Request 16.

Table
Index

Most significant byte Least significant byte

Control table 0 01 (Transmission/
reception)

8 + (2*N) (Transmission
length)

1 00 (Reception offset) 07 (Transmission offset)

Transmission table 2 Slave@(1..247) 16 (Request code)

3 Number of the first word to write

4 N = Number of words to write

5 00 (byte not sent, offset
effect)

2*N = Number of bytes to
write

6 First word value to write

7 Second value to write

...

N+5 N values to write

Reception table
(after response)

N+6 Slave@(1..247) 16 (Response code)

N+7 Number of the first word written

N+8 Number of words written (= N)

Note: The Tx Offset = 7 will suppress the 5th MMSB byte in the sent frame. This
also allows a good correspondence of words’ values in the transmission table.
148 TWD USE 10AE

Communications
Ethernet TCP/IP Communications Overview

Ethernet
Features

The following information describes the Ethernet-capable features of the Twido
TWDLCAE40DRF base controller.
The TWDLCAE40DRF base controller is an Ethernet-capable device that
implements the Modbus Application Protocol (MBAP) over TCP/IP. Modbus TCP/IP
provides peer-to-peer communications over the network in a client/server topology.

Frame Format The Twido TWDLCAE40DRF compact controller supports the Ethernet II frame
format only. It does not accommodate IEEE802.3 framing. Note that other PLCs
available from Schneider Electric, such as the Premium and Quantum series
support both Ethernet II and IEEE802.3 frame formats and are frame format
selectable. Therefore, if you are planning to team up your Twido controller with
Premium or Quantum PLCs, you should configure them as using Ethernet II frame
format to allow for optimum compatibility.

TCP
Connections

The TWDLCAE40DRF compact controller is a 4-simultaneous-channel device
capable of communicating over a 100Base-TX Ethernet network. It implements
100Base-TX auto-negotiation and can work on a 10Base-T network as well.
Moreover, it allows one marked IP connection, as configured in the TwidoSoft
application program (see Marked IP Tab, p. 166 for more details about Marked IP).

IP Address Each TWDLCAE40DRF base controller is assigned a unique static IP address as
default. The device default IP address is derived from the unique MAC physical
address (IEEE Global Address) permanently stored in the compact controller.
For increased flexibility on your network, other than using the default IP address, the
TwidoSoft application program allows you to configure a different static IP address
for this device, along with defining the subnetwork and gateway IP addresses.

Modbus TCP
Client/Server

A TWDLCAE40DRF controller can be both Modbus TCP/IP Client and Server
depending on whether it is querying or answering a remote device, respectively.
TCP messaging service is implemented via TCP port 502.
Modbus Client is implemented via the %EXCH3 instruction and %MSG3 function.
You may program several %EXCH3 instructions, however one %EXCH3 only can
be active at a time. The TCP connection is automatically negotiated by the compact
controller as soon as the %EXCH3 instruction is active.
TWD USE 10AE 149

Communications
Quick TCP/IP Setup Guide for PC-to-Controller Ethernet Communication

Scope This Quick TCP/IP Setup Guide is intended to provide Ethernet connectivity
information and TCP/IP configuration information to rapidly setup communication
between your PC running the TwidoSoft application and the Twido Controller over a
stand-alone Ethernet network.

Checking the
Current IP
Settings of your
PC

The following procedure describes how to check the current IP settings of your PC
Also, this procedure is valid for all versions of the Windows operating system:

Step Action

1 Select Run from the Windows Start menu.

2 Type "command" in the Open textbox of the Run dialog box.
Result: The C:\WINDOWS\system32\command.com prompt appears.

3 Type "ipconfig" at the command prompt.

4 The Windows IP Configuration appears, and displays the following
parameters:
IP Address..................:
Subnet Mask..............:
Default Gateway........:
Note: The above IP settings cannot be changed directly at the command
prompt. They are available for consultation only. If you plan to change the IP
configuration of your PC, please refer to the following section.
150 TWD USE 10AE

Communications
Configuring the
TCP/IP Settings
of your PC

The following information will help configure the TCP/IP settings of your PC running
the TwidoSoft application for programming and control of the Twido controller over
the network. The procedure outlined below is workable on a PC equipped with a
Windows XP operating system, and is intended as an example only. (Otherwise, for
other operating systems, please refer to TCP/IP setup instructions outlined in the
user's guide of the particular operating system installed on your PC.)

Step Action

Note: If your PC is already installed and the Ethernet card is configured over the
existing stand-alone network, you will not need to change the IP address settings
(skip steps 1-6 and continue to the following section). Follow steps 1-6 of this
procedure only if you intend to change the PC’s TCP/IP settings.

1 Select Control Panel > Network Connections from the Windows Start menu.

2 Right click on the Local Area Connection (the stand-alone network) on which
you are planning to install the Twido controller, and select Properties.

3 Select TCP/IP from the list of network components installed, and click
Properties.
Note: If TCP/IP protocol is not among the list of installed components, please
refer to the user's manual of your operating system to find out how to install the
TCP/IP network component.

4 The TCP/IP Properties dialog box appears and displays the current TCP/IP
settings of your PC, including IP Address and Subnet Mask.
Note: On a stand-alone network, do not use the Obtain an IP address
automatically option. The Specify an IP address radio-button must be
selected, and the IP Address and Subnet Mask fields must contain valid IP
settings.

5 Enter a valid static IP Address in dotted decimal notation. Over a stand-alone
network, we suggest you to specify a Class-C network IP address (see IP
Addressing, p. 156.). For example, 192.168.1.198 is a Class-C IP address.
Note: The IP address you specify must be compatible with the network ID of
the existing network. For example, if the existing network supports
192.168.1.xxx IP addresses (where 192.168.1 is the network ID, and xxx
= 0-255 is the host ID), than you may specify 191.168.1.198 as a valid IP
address for your PC. (Make sure the host ID 198 is unique over the network).

6 Enter a valid Subnet Mask in dotted decimal notation. If subnetting is not used
on your Class-C network, we suggest you to specify a Class-C network default
subnet mask such as 255.255.255.0 .
TWD USE 10AE 151

Communications
Configuring the
TCP/IP Settings
of your Twido
Controller

Once you have configured the TCP/IP settings of your PC hosting the TwidoSoft
application, you will need to configure the TCP/P settings of the Twido controller you
wish TwidoSoft to communicate with over the network, as described below:

Step Action

1 Connect a serial cable (TSXPCX1031) from the PC running TwidoSoft to the
Twido controller's RS-485 console port.

2 Launch the TwidoSoft application program on your PC.

3 Select a new Hardware from the TwisoSoft Application Brower and choose the
TWDLCAE40DRF controller.

4 Select PLC > Select a connection from the TwidoSoft menu bar, and choose
the COM1 port.

5 Double-click on the Ethernet Port icon in the TwisoSoft Application Browser
(or select Hardware > Ethernet from the menu bar) to call up the Ethernet
Configuration dialog box, as shown below:

6 From the IP Address Configure tab, select the Configured radio-button, and
start configuring the IP Address, Subnetwork mask and Gateway address
fields as explained in steps 7-9.
Note: At this stage, we are only dealing with the basic configuration of PC-to-
controller communication over the Ethernet network. Therefore, you will not
need to configure the Marked IP, Idle Checking and Remote Devices tabs yet.

Ethernet Configuration

OK

Configured
IP Address:

192 168 1 101

255 255 255 0

192 168 1 101

Subnetwork mask:

Gateway:

Default IP Address

Cancel Help

IP Address Configure Marked IP Idle Checking Remote Devices
152 TWD USE 10AE

Communications
7 Enter a valid static IP Address for the Twido controller in dotted decimal
notation. This IP address must be compatible with that of the PC's IP address
that you have configured in the previous section.
Note: The IP addresses of the Twido controller and the PC must share the
same network ID. However, the Twido controller's host ID must be different
from the PC's host ID, and unique over the network. For example, if the PC's
Class-C IP address is 192.168.1.198, then a valid address for the Twido
controller is 192.168.1.xxx (where 192.168.1 is the network ID, and xxx
= 0-197, 199-255 is the host ID).

8 Enter a valid Subnetwork mask in dotted decimal notation. The Twido
controller and the PC running TwidoSoft must be on the same network
segment. Therefore, you must enter a subnet mask that is identical to that
specified for the PC.
Note: If subnetting is not used on your Class-C network, we suggest you to
specify a Class-C network default subnet mask, such as 255.255.255.0 .

9 Enter a valid Gateway address in dotted decimal notation.
Note: If there is no gateway device on your stand-alone network, enter the
Twido controller's own IP Address that you have just configured in step 6 in this
field.

10 Click on OK to save the Ethernet configuration settings of your Twido
controller.

Step Action
TWD USE 10AE 153

Communications
Setting Up a New
TCP/IP
Connection in
TwidoSoft

You will now set up a new TCP/IP connection in the TwidoSoft application. The new
dedicated TCP/IP connection will allow the PC running TwidoSoft and the Twido
controller to communicate over the Ethernet network.

Step Action

1 Select File > Preferences > Connections Management from the TwidoSoft
menu bar to call up the Connections Management dialogbox, as shown
below:

2 Click the Add button in the Connections Management dialogbox.
Result: A new connection line is added. The new line displays suggested
default connection settings. You will need to change these settings.
Note: To set a new value in a field, you have two options:

Click once to select the desired field, then click the Modify button.
Double-click the desired field.

3 In the Name field, enter a descriptive name for the new connection. A valid
name may contain up to 32 alphnumeric characters.

4 In the Connection Type field, click to unfold the dropdown list and select TCP/
IP as you are setting up a new Ethernet connection between your PC and a
Ethernet-capable Twido controller.

5 In the Configuration field, enter a valid IP address and Unit ID (if any) which
is the IP information of the Twido TWDLCAE40DRF controller you wish to
connect to. The IP address and the Unit ID must be seperated by a comma.
IP Address: Enter the static IP address that you have specified for your Twido
controller in a previous section.
Unit ID: Leave this part of the field blank unless you are specifically connecting
to a Twido controller located across a Bridge on a Modbus serial link.

6 Use the default settings in Timeout and Break Timeout fields, unless you
have specific timeout needs. (For more details, please refer to Ethernet
Connections Management, p. 173.)

7 Click the OK button to save the new connection settings and close the
Connections management dialog box.
Result: The names of all the newly-added connections are added to the
dropdown list of connections in the File > Preferences dialog box and in the
PLC > Select a connection.

Connections management

Add Modify Delete OK

Name
COM6
COM7
TCPIP01

Connection type
Sérial
Sérial
TCP/IP

Configuration
COM6
COM7
192.168.1.101

Timeout
5000
5000
5000

Break timeout
20
20
5000

TCPIP02
TCPIP03

TCP/IP
TCP/IP

192.168.1.50
192.168.1.30,5

5000
5000

5000
5000
154 TWD USE 10AE

Communications
Connecting your Controller to the Network

Overview The following information describes how to install your TDWLCAE40DRF compact
controller on your Ethernet network.

Determining the
Appropriate IP
Address Set

Consult your network administrator to determine if you must configure a new set of
device IP, gateway and subnet mask addresses. If the administrator assigns new IP
address parameters, you will need to enter this information manually in the
TwidoSoft application. Follow the directions in the TCP/IP Setup, p. 162 section
hereafter.

Ethernet
Network
Connection

The following figure shows a Twido network connection via an Ethernet hub/switch:

The Twido TWDLCAE40DRF features a RJ-45 connector to connect to the
100BASE-TX network Ethernet with auto negotiation. It can accommodate both
100Mbps and 10 Mbps network speeds.

Note: Although direct cable connection (using a Ethernet crossover cable) is
supported between the Twido TWDLCAE40DRF and the PC running the
TwidoSoft programming software, we do not recommend it. Therefore, you should
always favor a connection via a network Ethernet hub/switch.

Note: When connecting the Twido controller to a 100BASE-TX network, you
should use at least a category 5 Ethernet cable.

PC Ethernet Network Port
RJ-45

Twido TWDLCAE40DRF

RJ-45 male
connector

RJ-45 male
connector

 Ethernet
Hub/Switch

RJ-45 Ethernet Port

SFTP Cat5 RJ45 Ethernet cable
TWD USE 10AE 155

Communications
IP Addressing

Overview This section provides you with information on IP Address notation, subnet and
gateway concepts as well.

IP Address An IP address is a 32-bit quantity expressed in dotted decimal notation. It consists
of four groups of numbers ranging in value from 0 to 255 and separated from one
another by a dot. For example, 192.168.2.168 is an IP address in dotted decimal
notation (note that this is a reserved IP address provided as an example only).
On usual networks, IP addresses fall into three categories named Class A, B, and C
networks. Classes can be differentiated according to the value of their first number
which ranges as described in the following table:

IP Subnet Mask An IP address consists of two parts, the network ID and the host ID. The subnet
mask is used to split the network portion of the IP address to artificially create
subnetworks with a larger number of host IDs. Thus, subnetting is used as a means
of connecting multiple physical networks to logical networks. All devices on the
same subnetwork share the same network ID.
All devices on the same subnetwork share the same network ID.

First decimal group IP class

0-127 Class A

128-191 Class B

192-223 Class C

Note: If you are part of a large organization, then there is a good chance that
subnetting is being implemented on your company's networks. Check with your
network administrator to obtain adequate subnetting information when you are
installing your new Twido controller on the existing network.
156 TWD USE 10AE

Communications
Gateway
Address

The Gateway is the networking device also called router that provides to your
network segment access to other network segments on your company's global
network, access to the Internet or to a remote Intranet.
The gateway address uses the same dotted decimal notation format as the IP
address described above.

Note: Check with your network administrator to obtain adequate gateway
information when you are installing your new Twido controller on the existing
network.
TWD USE 10AE 157

Communications
Assigning IP Addresses

Overview This section provides you with information on how to determine which type of IP
address you can assign to the Twido TWDLCAE40DRF controller that you wish to
install on your network.

Installation on a
Stand-alone
Network

Your Twido TWDLCAE40DRF controller is intended for installation on a stand-alone
Ethernet network.

MAC Address
and Default IP
Address of the
Controller

MAC Address: Each Twido TWDLCAE40DRF controller has its own factory-set
MAC address that is a worldwide-unique 48-bit address assigned to each Ethernet
device.
Default IP Address: The default Ethernet interface IP address of the Twido
controller is derived from its unique MAC address.
The default IP address expressed in dotted decimal notation is defined as follows:
085.016.xxx.yyy, where:

085.016. is a set header shared by all IP addresses derived from MAC address,
xxx and yyy are last two numbers of the device MAC address.

For example, the IP address derived from MAC address 00.80.F4.81.01.11 is
085.016.001.11.

Note: A network is called stand-alone when it is not linked to the Internet or a
company's Intranet.
158 TWD USE 10AE

Communications
Checking the
MAC Address
and Current IP
Address of the
Controller

To check out the MAC address and the current IP address of your Twido controller,
along with IP configuration settings (subnetwork mask and gateway addresses) and
Ethernet connection status, follows these instructions:

Step Action

1 In TwidoSoft application program, select PLC from the menu bar.

2 Select Check PLC from the menu items list.
Result: The Controller Operations dialogbox appears, displaying the Twido
LEDs on a soft front-panel, as shown in the figure below:

Close

Controller Operations

Date (dd/mm/yyyy):

Help

0
Time (hh:mm:ss): RTC Correction:

I/O Forced
RAM Executable
RAM Protected

Potentiometer
Potentiometer

Longest:
Current:
Shortest:

 Scan Time
2
1
0

102
0

 Sta-

 Controller Real Time

Advanced...

Ethernet

Configure

Set Time...

Init

Stop

Run

232221201918171615141312110
23

OUT

RUN ERR STAT BATT LAN
ST

LAN
ACT

1 2 3 4 5 6 7 8 9 10

15141312110 1 2 3 4 5 6 7 8 9 10
TWD USE 10AE 159

Communications
3 Click the Ethernet button located in the right portion of the screen to access the
connection parameters.
Result: The Control Operations - Ethernet table appears, displaying MAC,
current IP ,Subnet and Gateway information, as well as Ethernet connection
information, as shown in the following figure:

4 Note that the unique MAC address of the Twido controller is showing on the first
row of the Ethernet table.

5 The IP information displayed in this table varies depending on the user-settings
in the IP Configure tab of the Ethernet Configuration dialogbox (see IP
Address Configure Tab, p. 164):

if you selected Default IP Address from the IP Configure tab, the above
table displays the default IP address (derived from MAC address) of the
Twido controller, the default subnet and gateway as well.
if you selected Configured from the IP Configure tab, the above table
displays the current IP address, subnet and gateway settings that you have
previouly entered in the IP Configure tab.

Note: The remaining fields provide information about the current status of the
Ethernet connection. To find out more information, please refer to (See
TwdoSOFT).

Step Action

Close00 80 f4 10 00 3a

Controller Operations - Ethernet

Help

Clear

Ethernet MAC Address
192.168.2.168IP Address

Default Gateway
255.255.255.0Sub Mask
Passive Server, using by P-Unit (@ 192.168.2.2)CH1 status
Idle serverCH2 status
Idle serverCH3 status
Idle serverCH4 status
198Package Received
197Package Sent
0Error Package received
0Package sent w/o
Normal operationEthernet STAT
100MCurrent Connection
160 TWD USE 10AE

Communications
Private IP
Addresses

If your network is stand-alone (isolated from the Internet), you may therefore assign
to your network node (Twido controller) any arbitrary IP address (as long as the IP
address conforms to the IANA notation rule and it doesn't conflict with the IP address
of another device already connected to the network).
Privates IP addresses meet the need for arbitrary IP addressing over a stand-alone
network. Note that addresses within this private address space will only be unique
within the enterprise.
The following table outlines the private IP address space:

Assigning an IP
Address to your
Controller

Today’s networks are rarely either totally isolated from the Internet or from the rest
of the company's Ethernet network. Therefore, if you are installing and connecting
your Twido base controller to an existing network, do not assign an arbitrary IP
address without prior consulting with your network administrator. you should follow
the directions outlined below when assigning an IP address to your controller.

Network Valid range for private IP addresses

Class A 10.0.0.0 -> 10.255.255.255

Class B 172.16.0.0 -> 172.31.255.255

Class C 192.168.0.0 -> 192.168.255.255

Note: It is good practice to use Class-C IP addresses on stand-alone networks.
TWD USE 10AE 161

Communications
TCP/IP Setup

Overview The following are detailed instructions on how to set up the Ethernet TCPI/IP
configuration for your Twido TWDLCAE40DRF compact controller.

Note: TCP/IP setup can be performed when the TwidoSoft application program is
in offline mode only
162 TWD USE 10AE

Communications
Calling up the
Ethernet
Configuration
Dialogbox

The following steps detail how to call up the Ethernet Configuration dialogbox:

TCP/IP Setup The following sections detail how to configure the Twido TWDLCAE40DRF TCP/IP
parameters by using the IP Address Configure, Marked IP, Idle Checking and
Remote Devices tabs.

Step Action

1 Open the Application Browser, as shown in the figure below.
Result:

Note: Make sure an Ethernet-capable device such as TWDLCAE40DRF is
selected as the current hardware, or otherwise the Ethernet Port hardware
option will not appear.

2 Double-click on the Ethernet Port icon to bring up the Ethernet
Configuration dialogbox, as shown below.
Result:

Note: There are two alternate ways to call up the Ethernet Configuration
screen:
1. Right-click on the Ethernet Port icon and select Edit from the popup list.
2. Select Hardware > Ethernet from the TwidoSoft menu bar.

TWDLCAE40DRF

RTC

ETH

No heading

Hardware
port 1: Remote Link, 1
Expansion Bus
TWDXCPRTC
Ethernet Port

Ethernet Configuration

OK

Configured
IP Address:

192 168 1 101

255 255 255 0

192 168 1 101

Subnetwork mask:

Gateway:

Default IP Address

Cancel Help

IP Address Configure Marked IP Idle Checking Remote Devices
TWD USE 10AE 163

Communications
IP Address Configure Tab

Overview The following information describes how to configure the IP Address Configure tab
of the Ethernet Configuration dialogbox.

IP Address
Configure tab

The following figure presents a sample screen of the IP Address Configure tab
showing examples of IP, Subnet and Gateway addresses configured manually by
the user:

Configuring the
IP Address tab

The following information describes how to configure the various fields in the IP
Address Configure tab:

Note: The IP address of the Twido controller can be configured when the
TwidoSoft application program is in offline mode only

Ethernet Configuration

OK

Configured
IP Address:

192 168 1 101

255 255 255 0

192 168 1 101

Subnetwork mask:

Gateway:

Default IP Address

Cancel Help

IP Address Configure Marked IP Idle Checking Remote Devices

Field Configuring

Default IP
Address

Check this radio button if you do not wish to set the IP address of the Twido
controller manually (the IP Address, Subnetwork mask and Gateway textboxes
are grayed out). The Twido controller will then use the default Ethernet
interface IP address derived from its MAC address.
Note: To find out more information about the MAC address, please refer to
Assigning IP Addresses, p. 158.

Configured Check this radio button to configure the IP, subnetwork and gateway
addresses manually.
Note: Consult with your network or system administrator to obtain valid IP
parameters for your network.
164 TWD USE 10AE

Communications
IP Address Enter the static IP address of your Twido in dotted decimal notation.
Caution: For good device communication, the IP addresses of the PC running
the TwidoSoft application and the Twido controller must share the same
network ID.
Note: To allow good communication over the network, each connected device
must have a unique IP address. When connected to the network, the Twido
controller runs a check for duplicate IP address. If a duplicate IP address is
located over the network, the LAN ST LED of the Twido controller will emit 4
flashes periodically. You must then enter a new duplicate-free IP address in
this field.

Subnetwork
mask

Enter the valid subnet mask assigned to your controller by your network
administrator. Please note that you cannot leave this field blank; you must
enter a value.
As default, the TwidoSoft application automatically computes and displays a
default subnet mask based on the class IP that you have provided in the IP
Address field above. Default subnet mask values, according to the category of
the Twido network IP address, follow this rule:
Class A network -> Default subnet mask: 255.0.0.0
Class B network -> Default subnet mask: 255.255.0.0
Class C network -> Default subnet mask: 255.255.255.0
Caution: For good device communication, the subnet mask configured on the
PC running the TwidoSoft application and the Twido controller’s subnet mask
must match.
Note: Unless your Twido controller has special need for subnetting, use the
default subnet mask.

Gateway Enter the IP address of the gateway. On the LAN, the gateway must be on the
same segment as your Twido controller. This information typically is provided
to you by your network administrator. Please note that no default value is
provided by the application, and that you must enter a valid gateway address
in this field.
Note: If there is no gateway device on your network, simply enter your Twido
controller's IP address in the Gateway field.

Field Configuring
TWD USE 10AE 165

Communications
Marked IP Tab

Overview The following information describes how to configure the Marked IP tab of the
Ethernet Configuration dialogbox.

Definition of the
Marked IP
Function

This function allows you to reserve one of the four Ethernet TCP connection
channels supported by your Twido controller for a particular client host designated
as Marked IP.
Marked IP can ensure that one TCP channel is reserved and always available for
communication with the specified remote device, even if the idle timeout is disabled
(idle timeout is set to "0".)

Marked IP tab The following figure presents a sample screen of the Marked IP tab showing an
example of marked IP address entered by the user:

Note:
The Marked IP can be configured when the TwidoSoft application program is in
offline mode only.
You may use a Marked IP only if you configured the Twido controller’s IP
address manually in the IP Address Configure tab. Marked IP does not function
with the Default IP Address.

Ethernet Configuration

OK

192 168 1 50

Specify a marked
IP Address

Cancel Help

IP Address Configure Marked IP Idle Checking Remote Devices

Please specify one IP address for marked
connection.
166 TWD USE 10AE

Communications
Configuring the
Marked IP tab

To configure the Marked IP tab, follow these steps:

Step Action

1 Check the box labeled Specify a marked IP address to enable the Marked IP
function. Note that Marked IP is disabled, as default.
Result: The IP address box becomes active in the right portion of the frame,
as shown in the previous figure.

2 Enter the IP address of the client host you wish to mark the IP in the provided
IP address box.
Note: There is no default value in this field. You must provide the IP address
of the marked device, or otherwise uncheck the Specify a marked IP address
box to disable this function.
TWD USE 10AE 167

Communications
Idle Checking Tab

Overview The following information describes how to configure the Idle Checking tab of the
Ethernet Configuration dialogbox.

Definition of Idle
Checking

Idle Checking applies an idle timeout to all current Ethernet TCP connections of the
Twido controller. The idle timeout is the amount of time that any of the four Ethernet
TCP connection channels may remain idle before the remote client host connection
to this channel is dropped.
Note: The idle timer is reset whenever there is data traffic on the monitored
connection channel.

Idle Checking tab The following figure presents a sample screen of the Idle Checking tab showing the
10 min default value of the idle timer:

Note: The Idle Checking of the Twido controller can be configured when the
TwidoSoft application program is in offline mode only.

Ethernet Configuration

OK

Please set the Maximum idle time of TCP connection.

Cancel Help

IP Address Configure Marked IP Idle Checking Remote Devices

Note: PCL will detect active passive TCP connection and close idle one
if expire given time here. If the maximum idle time is set as 0 minute,
PCL will not do the detection.

Defaultmin(s)10
168 TWD USE 10AE

Communications
Configuring the
Idle Checking tab

To set the Idle timer, enter directly the elapsed time in minutes in the min(s) textbox,
as shown in the previous figure.

Note:
1. The default elapsed time is 10 minutes. After you entering a value, to reset the

configured elapsed time to 10 minutes, click on the Default button.
2. To disable the Idle Checking function, set the elapsed time to 0. The Twido

controller no longer performs idle checks. As a result, the TCP connections stay
up indefinitely.

3. The maximum idle time allowed to set is 255 minutes.
TWD USE 10AE 169

Communications
Remote Devices Tab

Overview The following information describes how to configure the Remote Devices tab of the
Ethernet Configuration dialogbox when you intend to use use the EXCH3 instruction
for the Twido controller to act as Modbus TCP/IP client.

What You Should
Know at First

You do not need to configure the Remote Devices on any controller other than the
controller that you want to use the Modbus TCP/IP client (legacy Modbus master)
instruction (EXCH3).

Remote Devices
Table

The Remote Devices table stores information about remote controllers (acting as
Modbus TCP/IP servers) over the Ethernet network that can be queried by the
Modbus TCP/IP client using the EXCH3 instruction. Therefore, you must configure
the Remote Devices table properly so that the Modbus TCP/IP client controller can
poll Modbus TCP/IP server controllers over the network.

Remote Devices
tab

The following figure presents a sample screen of the Remote Devices tab configured
on the Twido controller acting as Modbus TCP/IP client:

Note: The Remote Devices tab of the Twido controller can be configured when the
TwidoSoft application program is in offline mode only.

Ethernet Configuration

OK Cancel Help

IP Address Configure Marked IP Idle Checking Remote Devices

 Remote Devices

100255192.168.1.11
1005192.168.1.30

Connection
Timeout
(100ms)

Unit IDSlave IP
AddressIndex

1
2
3
4
5
6

170 TWD USE 10AE

Communications
Configuring the
Remote Devices
tab

The following information describes how to configure the various fields in the
Remote Devices tab:

Field Configuring

Index This is a read-only field that contains the MBAP Index associated with the
Ethernet network IP address of the remote device (Modbus TPC/IP server
specified in the Slave IP Address field). The MBAP Index is called by the
EXCH3 instruction as one of the function's arguments to identify which remote
controller specified in the table is being queried by the Modbus TCP/IP client.
Note: You may specify up to 16 different remote devices indexed from 1 to 16
in this table.

Slave IP
Address

Enter the IP address of the remote device (Modbus TCP/IP server) controller
in this field.
Note: You must configure the slave IP addresses starting at Index 1 and in
growing index number, in a consecutive manner. For example, configuring
slave IPs of index 1 than 3 is not allowed, for you must first configure the entry
indexed 2 prior to index 3.

Unit ID Enter the Modbus Unit ID (or Protocol Address) in this field. A valid Unit ID can
range from 0 to 255. The default setting is 255.
A Unit ID (other than 255) makes communications with a remote device across
a Modbus bridge or gateway possible. If the target device is another Twido
controller or a legacy Modbus device installed on another bus - serial link
address via a gateway, than you may set the Unit ID of that remote device,
accordingly.
In the field, you should set the Slave IP as the gateway or bridge IP address,
and the Unit ID as the Modbus serial link address of your target device.

Connection
Timeout (100
ms)

Specify the elapsed time in units of 100 ms that the Twido controller will keep
trying to establish a TCP connection with the remote device. If the connection
is still not established after Timeout, the Twido controller will give up trying, until
the next connection request by an EXCH3 instruction.
A valid timeout setting can range from 0 to 65535 (which translates to 0 to
6553.5 s). The default setting is 100.
TWD USE 10AE 171

Communications
Viewing the Ethernet Configuration

Overview You may use the TwidoSoft Configuration Editor to view the current Ethernet
configuration of the Twido controller.

Viewing the
Ethernet
Configuration

To view the current Ethernet configuration settings using the Configuration Editor,
follow these instructions:

Step Action

1 Select Program > Configuration Editor from the TwidoSoft menu bar.

2 Click on the shortcut labeled ETH in the Configuration Editor taskbar or double
click on the Ethernet Port shortcut in the Application Browser.

3 The Ethernet TCP/IP Configuration parameters appear in a table as shown in
the figure below:

4 At this stage, if you have just made changes to your Twido's Ethernet TCP/IP
configuration settings, you may still decide to keep the changes or to discard
them and restore the previous configuration, as explained below:

Select Tools > Accept Changes from the TwidoSoft menu bar, to keep the
changes you have made to the TCP/IP Ethernet configuration.
Select Tools > Cancel Changes to discard the changes and restore the
previous TCP/IP Ethernet configuration settings.
Select Tools > Edit... to return to the Ethernet Configuration dialogbox and
modify the TCP/IP configuration settings.
Select Tools > Update PLC Program to upload the complete PLC
configuration file into the Twido controller.

123123123123JUL 1
0

Ethernet Configuration

IP Address Configuration
IP address
Subnetwork mask
Gateway address
Marked IP
Remote Server
Slave IP address
192 . 168 . 1 . 11
192 . 168 . 1 . 30
192 . 168 . 1 . 50
192 . 168 . 1 . 16
192 . 168 . 1 . 20

255
5
255
255
255

100
100
1500
1500
100

Unit ID
Connection

Timeout

192 . 168 . 1 . 101
255 . 255 . 255 . 0
192 . 168 . 1 . 101
192 . 168 . 1 . 50

1
0123123123123

123123123123
172 TWD USE 10AE

Communications
Ethernet Connections Management

Overview The following information describes how to configure/add/delete/select a PC-to-
controller Ethernet TPC/IP connection.

Setting up a New
TCP/IP
Connection

To set up an Ethernet TCP/IP connection between your PC running the TwidoSoft
application and a TWDLCAE40DRF controller installed on your network, follow
these instructions:

Step Action

1 Select File > Preferences > Connections Management from the TwidoSoft
menu bar to call up the Connections Management dialogbox, as shown below:

2 Click the Add button in the Connections Management dialogbox.
Result: A new connection line is added. The new line displays suggested
default connection settings. You will need to change these settings.
Note: To set a new value in a field, you have two options:

Click once to select the desired field, then click the Modify button.
Double-click the desired field.

3 In the Name field, enter a descriptive name for the new connection. A valid
name may contain up to 32 alphanumeric characters.

4 In the Connection Type field, click to unfold the dropdown list and select TCP/
IP as you are setting up a new Ethernet connection between your PC and a
Ethernet-capable Twido controller.

Connections management

Add Modify Delete OK

Name
COM6
COM7
TCPIP01

Connection type
Serial
Serial
TCP/IP

Configuration
COM6
COM7
192.168.1.101

Timeout
5000
5000
5000

Break timeout
20
20
5000

TCPIP02
TCPIP03

TCP/IP
TCP/IP

192.168.1.50
192.168.1.30,5

5000
5000

5000
5000
TWD USE 10AE 173

Communications
Modifying and
Deleting a TCP/IP
Connection

Existing Ethernet TCP/IP connections can be deleted or have their parameters
modified, as follows:

To delete a connection from the Ethernet management dialogbox, click once on
the Name of the desired connection, and click the Delete button. Note that after
deletion, all the connection parameters are permanently lost.
To modify the parameters of an existing connection, click once to select the
desired field, and click the Modify button. Then, you may start entering the new
value in the selected field.

5 In the Configuration field, enter a valid IP address and Unit ID (if any) which
is the IP information of the Twido TWDLCAE40DRF controller you wish to
connect to. The IP address and the Unit ID must be seperated by a comma.
IP address: Depending on how you chose to configure the Twido controller,
enter either the Default IP Address or the user-specified Static IP Address
assigned to the controller.
Unit ID: Enter an integer between 0 and 255:

If the target Twido controller is located past a gateway or bridge on a
Modbus serial link, the Unit ID is the device serial
If the target Twido controller is located on the same Ethernet network layer
as your PC, you may leave this field blank. The default Unit ID (255) will be
assigned automatically.

6 In the Timeout field, enter a timeout value in milliseconds (ms) for establishing
a connection with the Twido controller. After timeout has elapsed and the PC
has failed to connect to the controller, the TwidoSoft application will give up
trying to establish a connection. To resume a new attempt for connection,
select PLC > Select a connection from the TwidoSoft menu bar.
Note: The maximum timeout value is 65535 ms (65.5 s).

7 The Break timeout is the maximum elapsed time allowed between a Modbus
TCP/IP query and the reception of the response frame. If Break timeout is
exceeded without receiving the requested response frame, the TwidoSoft
application breaks the connection between the PC and the controller.
Note: The maximum timeout value is 65535 ms (65.5 s). The default value is
5000 ms. Note that zero is not a valid entry; you must set a non-zero value in
this field.
Note: The maximum timeout value is 65535 ms (65.5 s).

8 Click the OK button to save the new connection settings and close the
Connections management dialog box.
Result: The names of all the newly-added connections are added to the
dropdown list of connections in the File > Preferences dialog box and in the
PLC > Select a connection.

Step Action
174 TWD USE 10AE

Communications
Ethernet LED Indicators

Overview Two Ethernet communications LED indicators are located on the LED panel, at the
front panel of the TWDLCAE40DRF controller and on the soft front-panel accessible
via the PLC > Check PLC path in the TwidoSoft application as well. They are label
as follows:·

LAN ACT
LAN ST

The Ethernet LEDs provide continuous monitoring of the Ethernet port connections
status and diagnostics.
TWD USE 10AE 175

Communications
LED Status The following table describes the status of both LAN ACT and LAN ST Ethernet
LED indicators.

LED State Color Description

LAN ACT Off - No Ethernet signal on RJ-45 port.

Steady Green 10BASE-TX link beat signal to indicate a 10 Mbps
connection.

Blinking Data packets sent or received over the 10BASE-TX
connection.

Steady Amber 100BASE-TX link beat signal to indicate a 100 Mbps
connection.

Blinking Data packets sent or received over the 100BASE-TX
connection.

LAN ST Steady Green Base controller is powered on. Ethernet port is ready to
communicate over the network.

Flashing
twice

Ethernet initialization at power-up.

2 Flashes,
long off

No valid MAC address.

3 Flashes,
long off

Any of three possible causes:
No link beat detected.
Ethernet network cable is not plugged correctly or
faulty cable.
Network device (hub/switch) is faulty or not properly
configured.

4 Flashes,
long off

Duplicate IP address detected over the network. (To
remedy this situation, try assigning a different IP
address to your Twido controller.)

6 Flashes,
long off

Using a valid converted default IP address; FDR safe-
mode.

9 Flashes,
long off

Ethernet hardware failure.
176 TWD USE 10AE

Communications
TCP Modbus Messaging

Overview You may use TCP Modbus messaging to allow the Modbus TCP Client (Master
controller) to send and receive Ethernet messages to and from the Modbus TCP
Server (Slave controller). As TCP Modbus is a peer-to-peer communications
protocol, a Twido Ethernet-capable controller can be both Client and Server
depending on whether it is querying or answering requests, respectively.

Message
Exchange over
the Ethernet
Network

Ethernet messaging is handled by the EXCH3 instruction and the %MSG3 function
block: Routing to an Ethernet host or via a gateway is supported by EXCH3, as well.

EXCH3 instruction: to transmit/receive messages
%MSG3 Function Block: to control the message exchanges.

EXCH3
Instruction

The EXCH3 instruction allows the Twido controller to send and/or receive
information to/from Ethernet network nodes. The user defines a table of words
(%MWi:L) containing control information and the data to be sent and/or received (up
to 128 bytes in transmission and/or reception). The format for the word table is
described in the following section.
A message exchange is performed using the EXCH3 instruction:

The Twido controller must finish the exchange from the first EXCH3 instruction
before a second can be launched. The %MSG3 function block must be used when
sending several messages.
The processing of the EXCH3 list instruction occurs immediately, with any
transmissions started under interrupt control (reception of data is also under
interrupt control), which is considered background processing.

Note: Usage of the EXCH3 instruction is the same as EXCHx (where x = 1 or 2)
used with legacy Modbus. Instruction syntaxes are also identical. However, there
is one major difference in the information carried by Byte1 of the transmission and
reception tables. While Byte1 of the legacy Modbus conveys the serial link address
of the slave controller, Byte1 of the TCP Modbus carries the Index number of the
Modbus TCP client controller. The Index number is specified and stored in the
Remote Devices table of the TwidoSoft Ethernet Configuration (for more details
seeRemote Devices Tab, p. 170).

Syntax: [EXCH3 %MWi:L]
where: L = number of words in the control words, transmission and reception tables
TWD USE 10AE 177

Communications
EXCH3 Word
Table

The maximum size of the transmitted and/or received frames is 128 bytes (note that
this limitation applies to the TCP Modbus client only, while the TCP Modbus server
supports the standard Modbus PDU length of 256 bytes). Moreover, the word table
associated with the EXCH3 instruction is composed of the control, transmission and
reception tables, as described below:

Most significant byte Least significant byte

Control table Command Length (Transmission/
Reception)

Reception Offset Transmission Offset

Transmission table Transmitted Byte 1 (Index as
specified in the Remote Device
Table of the TwidoSoft Ethernet
Configuration dialogbox.)

Transmitted Byte 2 as Modbus
serial

... ...

... Transmitted Byte n

Transmitted Byte n+1

Reception table Received Byte 1 (Index as
specified in the Remote Device
Table of the TwidoSoft Ethernet
Configuration dialogbox.)

Received Byte 2 as Modbus
serial

... ...

... Received Byte p

Received Byte p+1
178 TWD USE 10AE

Communications
%MSG3 Function
Block

The use of the %MSG3 function is identical to that of %MSGx used with legacy
Modbus. %MSG3 is used to manage data exchanges by providing:

Communications error checking
Coordination of multiple messages
Transmission of priority messages

The %MSGx function block has one input and two outputs associated with it:

Input/Output Definition Description

R Reset input Set to 1: re-initializes communication or
resets block (%MSGx.E = 0 and %MSGx.D =
1).

%MSGx.D Communication
complete

0: request in progress.
1: communication done if end of
transmission, end character received, error,
or reset of block.

%MSGx.E Error 0: message length OK and link OK.
1: if bad command, table incorrectly
configured, incorrect character received
(speed, parity, and so on.), or reception table
full.
TWD USE 10AE 179

Communications
EXCH3 Error
Code

When an error occurs with the EXCH3 instruction:
bits %MSG3.D and %MSG3.E are set to 1, and
the Ethernet communication error code is recorded into system word %SW65.

The following table presents the EXCH3 error code:

EXCH3 Error Code (recorded into System Word %SW65)

Standard error codes common to all EXCHx (x = 1, 2, 3):
0 - operation was successful
1 – number of bytes to be transmitted is too great (> 128)
2 - transmission table too small
3 - word table too small
4 - receive table overflowed
5 - time-out elapsed (Note that eror code 5 is void with the EXCH3 instruction and replaced
by the Ethernet-specific error codes 109 and 122 described below.)
6 - transmission
7 - bad command within table
8 - selected port not configured/available
9 - reception error
10 - can not use %KW if receiving
11 - transmission offset larger than transmission table
12 - reception offset larger than reception table
13 - controller stopped EXCH processing

Error codes dedicated to Modbus response:
81 - slave (server) PLC returns ILLEGAL FUNCTION response
82 - slave (server) PLC returns ILLEGAL DATA ADDRESS response
83 - slave (server) PLC returns ILLEGAL DATA VALUE response
84 - slave (server) PLC returns SLAVE DEVICE FAILURE response
85 - slave (server) PLC returns ACKNOWLEDGE response
86 - slave (server) PLC returns SLAVE DEVICE BUSY response
87 - slave (server) PLC returns NEGATIVE ACKNOWLEDGE response
88 - slave (server) PLC returns MEMORY PARITY ERROR response
180 TWD USE 10AE

Communications
Ethernet-specific error codes for EXCH3:
101 - no such IP address
102 - the TCP connection is broken
103 - no socket available (all connection channels are busy)
104 - network is down
105 - network cannot be reached
106 - network dropped connection on reset
107 - connection aborted by peer device
108 - connection reset by peer device
109 - connection time-out elapsed
110 - rejection on connection attempt
111 - host is down
120 - unknown index (remote device is not indexed in configuration table)
121 - fatal (MAC, Chip, Duplicated IP)122 - receiving timed-out elapsed after data was sent
123 - Ethernet initialization in progress

EXCH3 Error Code (recorded into System Word %SW65)
TWD USE 10AE 181

Communications
182 TWD USE 10AE

TWD USE 10AE
7

Built-In Analog Functions
At a Glance

Subject of this
Chapter

This chapter describes how to manage the built-in analog channel and
potentiometers.

What's in this
Chapter?

This chapter contains the following topics:

Topic Page

Analog potentiometer 184

Analog Channel 185
183

Built-In Analog Functions
Analog potentiometer

Introduction Twido controllers have:
An analog potentiometer on TWDLC•A10DRF, TWDLC•A16DRF controllers and
on all modular controllers (TWDLMDA20DTK, TWDLMDA20DUK,
TWDLMDA20DRT, TWDLMDA40DTK and TWDLMDA40DUK,
Two potentiometers on the TWDLC•A24DRF and TWDLCA•40DRFcontrollers.

Programming The numerical values, from 0 to 1023 for analog potentiometer 1, and from 0 to 511
for analog potentiometer 2, corresponding to the analog values provided by these
potentiometers are contained in the following two input words:

%IW0.0.0 for analog potentiometer 1 (on left)
%IW0.0.1 for analog potentiometer 2 (on right)

These words can be used in arithmetic operations. They can be used for any type
of adjustment, for example, presetting a time-delay or a counter, adjusting the
frequency of the pulse generator or machine preheating time.

Example Adjusting the duration of a time-delay from 5 to 10 s using analog potentiometer 1:

The following parameters are selected at configuration for the time-delay block
%TM0:

Type TON
Timebase: 10 ms

The preset value of the time-delay is calculated from the adjustment value of the
potentiometer using the following equation %TM0.P := (%IW0.0.0/2)+500.

 For this adjustment practically the entire
adjustment range of analog
potentiometer 1 from 0 to 1023 is used.

10s

5s

0 1023
184 TWD USE 10AE

Built-In Analog Functions
Code for the above example:

Analog Channel

Introduction All Modular controllers (TWDLMDA20DTK, TWDLMDA20DUK, TWDLMDA20DRT,
TWDLMDA40DTK, and TWDLMDA40DUK) have a built-in analog channel. The
voltage input ranges from 0 to 10 V and the digitized signal from 0 to 511. The analog
channel takes advantage of a simple averaging scheme that takes place over eight
samples.

Principle An analog to digital converter samples an input voltage from 0 to 10 V to a digital
value from 0 to 511. This value is stored in system word %IW0.0.1. The value is
linear through the entire range, so that each increment is approximately 20 mV (10
V/512). Once the system detects value 511, the channel is considered saturated.

Programming
Example

Controlling the temperature of an oven: The cooking temperature is set to 350°C.
A variation of +/- 2.5°C results in tripping of output %Q0.0 and %Q0.2, respectively.
Practically all of the possible setting ranges of the analog channel from 0 to 511 is
used in this example. Analog setting for the temperature set points are:

LD 1
[%MW0:=%IW0.0.0/2]
[%TM0.P:=%MW0+500]
BLK %TM0
LD %I0.0
IN
OUT_BLK
LD Q
ST %Q0.0
END_BLK
...................

IN Q

%MW0:=%IW0.0.0/2

%TM0.P:=%MW0+500

%I0.0 %Q0.0%TM0

Temperature (°C) Voltage System Word %IW0.0.1

0 0 0

347.5 7.72 395

350 7.77 398

352.5 7.83 401

450 10 511
TWD USE 10AE 185

Built-In Analog Functions
Code for the above example:

LD [%IW0.0.1 = 395]
ST %Q0.0

LD [%IW0.0.1 <= 398]
ST %Q0.1

LD [%IW0.0.1 >= 401]
ST %Q0.2

%IW0.0.1 = 395

%IW0.0.1 <= 398

%IW0.0.1 >= 401

%Q0.0

%Q0.1

%Q0.2
186 TWD USE 10AE

TWD USE 10AE
8

Managing Analog Modules
At a Glance

Subject of this
Chapter

This chapter provides an overview of managing analog modules for Twido
controllers.

What's in this
Chapter?

This chapter contains the following topics:

Topic Page

Analog Module Overview 188

Addressing Analog Inputs and Outputs 189

Configuring Analog Inputs and Outputs 190

Analog Module Status Information 192

Example of Using Analog Modules 193
187

Managing Analog Modules
Analog Module Overview

Introduction In addition to the built-in 10-bit potentiometer and 9-bit analog channel, all the Twido
controllers that support expansion I/O are also able to configure and communicate
analog I/O modules.
These analog modules are:

Operating
Analog Modules

Input and output words (%IW and %QW) are used to exchange data between the
user application and any of the analog channels. The updating of these words is
done synchronously with the controller scan during RUN mode.

Name Points Signal Range Encoding

TWDAMI2HT 2 In 0 - 10 Volts or 4 - 20 mA 12 Bit

TWDAM01HT 1 output 0 - 10 Volts or 4 - 20 mA 12 Bit

TWDAMM3HT 2 In, 1 Out 0 - 10 Volts or 4 - 20 mA 12 Bit

TWDALM3LT 2 In, 1 Out 0 - 10 Volts, Inputs Th or PT100,
Outputs 4 - 20 mA

12 Bit

CAUTION
Unexpected start-up of devices
When the controller is set to STOP, the analog output is set to its fall-
back position. As is the case with digital output, the fall-back position is
zero.

Failure to follow this precaution can result in injury or equipment
damage.
188 TWD USE 10AE

Managing Analog Modules
Addressing Analog Inputs and Outputs

Introduction Addresses are assigned to the analog channels depending on their location on the
expansion bus.

Example of
Addressing
Analog I/O

In this example, a TWDLMDA40DUK has a built-in analog-adjusted 10-bit
potentiometer, a 9-bit built-in analog channel. On the expansion bus are the
following: a TWDAMM3HT analog module, a TWDDMM8DRT input/output digital
relay module, and a second TWDAMM3HT analog module are configured.

The table below details the addressing for each output.

Description Base Module 1 Module 2 Module 3

Potentiometer 1 %IW0.0.0

Built-in analog channel %IW0.0.1

Analog in channel 1 %IW0.1.0 %IW0.3.0

Analog in channel 2 %IW0.1.1 %IW0.3.1

Analog output channel 1 %QW0.1.0 %QW0.3.0

Digital in channels %I0.2.0 - %I0.2.3

Digital out channels %Q0.2.0 -%Q0.2.3

Base Module 2Module 1 Module 3
TWD USE 10AE 189

Managing Analog Modules
Configuring Analog Inputs and Outputs

Introduction This section provides information on configuring analog module’s inputs and
outputs.

Configuring
Analog I/O

The Configure Module dialog box is used to manage the parameters of the analog
modules.

Addresses are assigned to the analog channels depending on their location on the
expansion bus. As a programming aid, you can also assign previously defined
symbols to manipulate the data in your user application.
You can configure channel types for the TWDAM01HT, TWDAMM3HT, and
TWDALM3LT's single output channel to be:

Not used
0 - 10 V
4 – 20 mA

You can configure channel types for the TWDAMI2HT and TWDAMM3HT’s two
input channels to be:

Not used
0 - 10 V
4 – 20 mA

The TWDALM3LT's two input channels can be configured of type:
Not used
Thermocouple K
Thermocouple J
Thermocouple T
PT 100

Note: You can only modify the parameters offline, when you are not connected to
a controller.

CAUTION
Equipment damage
If you have wired your input for a voltage measurement, and you
configure TwidoSoft for a current type of configuration, you may
permanently damage the analog module. Ensure that the wiring is in
agreement with the TwidoSoft configuration.

Failure to follow this precaution can result in injury or equipment
damage.
190 TWD USE 10AE

Managing Analog Modules
When a channel is configured, you can choose to assign units and map the range
of inputs according to the following table:

Range Units Description

Normal None Fixed range from a minimum of 0 to a maximum of 4095.

Custom None User defined with a minimum of no less than -32768 and a
maximum no higher than 32767.

Celsius 0.1°C International thermometric scale. This is only available for
the TWDALM3LT input channels.

Fahrenheit 0.1°F Thermometric scale where the boiling point of water is 212°F
(100°C) and the freezing point is 32°F (0°C). This is only
available for the TWDALM3LT input channels.
TWD USE 10AE 191

Managing Analog Modules
Analog Module Status Information

Status Table The following table has the information you need to monitor the status of Analog I/O
modules.

System
Word

Function Description

%SW80 Base I/O Status Bit [0] Channels in normal operation (for all its channels)
Bit [1] Module under initialization (or of initializing information of all channels)
Bit [2] Hardware failure (external power supply failure, common to all channels)
Bit [3] Module configuration fault
Bit [4] Converting data input channel 0 in progress
Bit [5] Converting data input channel 1 in progress
Bit [6] Input thermocouple channel 0 not configured
Bit [7] Input thermocouple channel 1 not configured
Bit [8] Not used
Bit [9] Unused
Bit [10] Analog input data channel 0 over range
Bit [11] Analog input data channel 1 over range
Bit [12] Incorrect wiring (analog input data channel 0 below current range, current loop
open)
Bit [13] Incorrect wiring (analog input data channel 1 below current range, current loop
open)
Bit [14] Unused
Bit [15] Output channel not available

%SW81 Expansion I/O Module 1 Status: Same definitions as %SW80

%SW82 Expansion I/O Module 2 Status: Same definitions as %SW80

%SW83 Expansion I/O Module 3 Status: Same definitions as %SW80

%SW84 Expansion I/O Module 4 Status: Same definitions as %SW80

%SW85 Expansion I/O Module 5 Status: Same definitions as %SW80

%SW86 Expansion I/O Module 6 Status: Same definitions as %SW80

%SW87 Expansion I/O Module 7 Status: Same definitions as %SW80
192 TWD USE 10AE

Managing Analog Modules
Example of Using Analog Modules

Introduction This section provides an example of using Analog modules available with Twido.

Example: analog
input

This example compares the analog input signal with five separate threshold values.
A comparison of the analog input is made and a bit is set on the base controller if it
is less than or equal to the threshold.

%Q0.2
%IW1.0 < 64

%Q0.1
%IW1.0 < 32

LD [%IW1.0 < 16]
ST %Q0.0

LD [%IW1.0 < 32]
ST %Q0.1

LD [%IW1.0 < 64]
ST %Q0.2

LD [%IW1.0 < 128]
ST %Q0.3

LD [%IW1.0 < 256]
ST %Q0.4

%Q0.0
%IW1.0 < 16

%Q0.3
%IW1.0 < 128

%Q0.4
%IW1.0 < 256
TWD USE 10AE 193

Managing Analog Modules
Example: analog
output

The following program uses an analog card in slot 1 and 2. The card used in slot 1
has a 10-volt output with a "normal" range:

Example of output values for %QW1.0=4095 (normal case):
The following table shows the output voltage value according to the maximum value
assigned to %QW1.0:

Example of output values for a customized range (minimum = 0, maximum =
1000):

The following table shows the output voltage value according to the maximum value
assigned to %QW1.0:

numerical value analog value (volt)

Minimum 0 0

Maximum 4095 10

Value 1 100 0.244

Value 2 2460 6

numerical value analog value (volt)

Minimum 0 0

Maximum 1000 10

Value 1 100 1

Value 2 600 6

%QW0.2.0:=%MW0

LD 1
[%QW0.1.0:=4095
LD 1
[%QW0.2.0:=%MW0

%QW0.1.0:=4095
194 TWD USE 10AE

TWD USE 10AE
9

Installing the AS-Interface V2 bus
At a Glance

Subject of this
Chapter

This chapter provides information on the software installation of the AS-Interface
Master module TWDNOI10M3 and its slaves.

What's in this
Chapter?

This chapter contains the following topics:

Topic Page

Presentation of the AS-Interface V2 bus 196

General functional description 197

Software set up principles 200

Description of the configuration screen for the AS-Interface bus 202

Configuration of the AS-Interface bus 204

Description of the debug screen 210

Modification of Slave Address 213

Updating the AS-Interface bus configuration in online mode 215

Automatic addressing of an AS-Interface V2 slave 220

How to insert a slave device into an existing AS-Interface V2 configuration 221

Automatic replacement of a faulty AS-Interface V2 slave 222

Addressing I/Os associated with slave devices connected to the AS-Interface
V2 bus

223

Programming and diagnostics for the AS-Interface V2 bus 225

AS-Interface V2 bus interface module operating mode: 230
195

Installing the AS-Interface bus
Presentation of the AS-Interface V2 bus

Introduction The AS-Interface Bus (Actuator Sensor-Interface) allows the interconnection on a
single cable of sensor devices/actuators at the lowest level of automation.
These sensors/actuators will be defined in the documentation as slave devices.

To implement the AS-Interface application you need to define the physical context
of the application into which it will integrated (expansion bus, supply, processor,
modules, AS-Interface slave devices connected to the bus) then ensure its software
implementation.

This second aspect will be carried out from the different TwidoSoft editors:
either in local mode,
or in online mode.

AS-Interface V2
Bus

The AS-interface Master module TWDNOI10M3 includes the following
functionalities:

M3 profile: This profile includes all the functionalities defined by the AS-Interface
V2 standard, but does not support the S7-4 analog profiles
One AS-Interface channel per module
Automatic addressing for the slave with the address 0
Management of profiles and parameters
Protection from polarity reversion on the bus inputs

The AS-Interface bus then allows:
Up to 31 standard address and 62 extended address slaves
Up to 248 inputs and 186 outputs
Up to 7 analog slaves (Max of four I/0 per slave)
A cycle time of 10 ms maximum

A maximum of 2 AS-Interface Master modules can be connected to a Twido modular
controller, a TWDLC•A24DRF or a TWDLCA•40DRFcompact controller.
196 TWD USE 10AE

Installing the AS-Interface bus
General functional description

General
Introduction

For the AS-Interface configuration, TwidoSoft software allows the user to:
Manually configure the bus (declaration of slaves and assignment of addresses
on the bus)
Adapt the configuration according to what is present on the bus
Acknowledge the slave parameters
Control bus status

For this reason, all data coming from or going to the AS-Interface Master are stored
in specific objects (words and bits).
TWD USE 10AE 197

Installing the AS-Interface bus
AS-Interface
Master Structure

The AS-Interface module includes data fields that allow you to manage the lists of
slaves and the images of input / output data. This information is stored in volatile
memory.
The figure below shows TWDNOI10M3 module architecture.

Key:

Address Item Description

1 I/O data
(IDI, ODI)

Images of 248 inputs and 186 outputs of AS-Interface
V2 bus.

2 Current parameters
(PI, PP)

Image of the parameters of all the slaves.

3 Configuration/
Identification
(CDI, PCD)

This field contains all the I/O codes and the
identification codes for all the slaves detected.

4 LDS List of all slaves detected on the bus.

5 LAS List of slaves activated on the bus.

6 LPS List of slaves provided on the bus and configured via
TwidoSoft.

7 LPF List of slaves having a device fault.

Configuration /
Identification

Parameters
current

I/O data

LDS

LAS

LPS

1

2

3

4

5

6

AS-Interface bus

LPF7

TWDNOI10M3
198 TWD USE 10AE

Installing the AS-Interface bus
Structure of
Slave Devices

The standard address slaves each have:
4 input/output bits
4 parametering bits

The slaves with extended addresses each have:
4 input/output bits (the last bit is reserved for entry only)
3 parametering bits

Each slave has its own address, profile and sub-profile (defines variables
exchange).
The figure below shows the structure of an extended address slave:

Key:

Address Item Description

1 Input/output
data

Input data is stored by the slave and made available for the AS-
Interface master.
Output data is updated by the master module.

2 Parameters The parameters are used to control and switch internal operating
modes to the sensor or the actuator.

3 Configuration/
Identification

This field contains:
the code which corresponds to I/O configuration,
the slave identification (ID) code,
the slave identification codes (ID1 and ID2).

4 Address Physical address of slave.

Note: The operating parameters, address, configuration and identification data are saved in
a non-volatile memory.

AS-Interface slave

I/O data

Parameters

Configuration/
Identification

Address

1

2

3

4

D0

(D3)

P0

AS-Interface bus

P2

Input Bit Only
TWD USE 10AE 199

Installing the AS-Interface bus
Software set up principles

At a Glance To respect the philosophy adopted in TwidoSoft, the user should adopt a step-by-
step approach when creating an AS-Interface application.

Set up principle The user must know how to functionally configure his AS-Interface bus (See How to
insert a slave device into an existing AS-Interface V2 configuration, p. 221).
The following table shows the different software implementation phases of the AS-
Interface bus.

Mode Phase Description

Local Declaration of module Choice of the slot for the AS-Interface Master
module TWDNOI10M3 on the expansion bus.

Configuration of the
module channel

Choice of "master" modes.

Declaration of slave
devices

Selection for each device:
of its slot number on the bus,
of the type of standard or extended address
slave.

Confirmation of
configuration parameters

Confirmation at slave level.

Global confirmation of
the application

Confirmation of application level.

Local or
connected

Symbolization (optional) Symbolization of the variables associated with the
slave devices.

Programming Programming the AS-Interface V2 function.

Connected Transfer Transfer of the application to the PLC.

Debugging Debugging the application with the help of:
the debug screen, used on the one hand to
display slaves (address, parameters), and on the
other, to assign them the desired addresses,
diagnostic screens allowing identification of
errors.

Note: The declaration and deletion of the AS-Interface Master module on the
expansion bus is the same as for another expansion module. However, once two
AS-Interface Master modules have been declared on the expansion bus,
TwidoSoft will not permit another one to be declared.
200 TWD USE 10AE

Installing the AS-Interface bus
Precautions
Prior to
Connection

Before connecting (via the software) the PC to the controller and to avoid any
detection problem:

Ensure that no slave is physically present on the bus with address 0
Ensure that 2 slaves are not physically present with the same address.
TWD USE 10AE 201

Installing the AS-Interface bus
Description of the configuration screen for the AS-Interface bus

At a Glance The configuration screen of the AS-Interface master module gives access to the
parameters associated with the module and the slave devices.
It can be used to display and modify parameters in offline mode.

Illustration of
Offline Mode

Illustration of the configuration screen in offline mode:

Configure Module - TWDNOI10M3 [Position 1]

OK

Description

Configuration

 AS-interface configuration

Std/A Slaves
00

01

02

03
04
05

06

07

08

09

10

11
12
13

14
15

16

XVBC21A

WXA36

/B Slaves

ASI20MT4IE

INOUT24/12

Cancel Help

Characteristics

7IO fID fID1 fID2

 Slave 1A

Profile:

Comment: XVB illuminated column base

 Parameters

0 Blink e1 2 Blink e3

1 Blink e2 3 Blink e4

DecimalBits

 Inputs/Outputs

Inputs

1

Number Outputs Number

2
1
2

%IA1.1A.0
%IA1.1A.1

%QA1.1A.0
%QA1.1A.1

 Master mode

Network down

Automatic addressing

Master AS-Interface expansion module

Set data exchange active
202 TWD USE 10AE

Installing the AS-Interface bus
Description of
the Screen in
Offline Mode

This screen groups all data making up the bus in three blocks of information:

The screen also includes 3 buttons:

Blocks Description

AS-interface configuration Bus image desired by the user: view of standard and extended
address setting slaves expected on the bus. Move the cursor
down the vertical bar to access the following addresses.
Grayed out addresses correspond to addresses not available
here for slave configuration. If, for example, a new standard
address setting slave is declared with the address 1A, the
address 1B is automatically grayed out.

Slave xxA/B Configuration of the selected slave:
Characteristics: IO code, ID code, ID1 and ID2 codes
(profiles), and comments on the slave,
Parameters: list of parameters (modifiable), in binary (4
check boxes) or decimal (1 check box) form, at the discretion
of the user,
Inputs/Outputs: list of available I/Os and their respective
addresses.

Master mode Activation or deactivation is possible for the two functionalities
available for this AS-Interface module (for example, automatic
addressing).
"Network down" allows you to force the AS-Interface bus to
enter the offline mode.
"Automatic addressing" mode is checked by default.
Note: The "Data exchange activation" function is not yet
available.

Buttons Description

OK Used to save the AS-Interface Bus configuration visible on the
configuration screen
Then return to the main screen.
The configuration can then be transferred to the Twido
controller.

Cancel Returns to the main screen without acknowledging the changes
in progress.

Help Opens a Help window on-screen.

Note: Changes in the configuration screen can only be made in offline mode.
TWD USE 10AE 203

Installing the AS-Interface bus
Configuration of the AS-Interface bus

Introduction AS-Interface bus configuration takes place in the configuration screen in local mode.
Once the AS-Interface Master and the master modes have been selected,
configuration of the AS-Interface bus consists of configuring the slave devices.
204 TWD USE 10AE

Installing the AS-Interface bus
Procedure for
Declaring and
Configuring a
Slave

Procedure for creating or modifying a slave on the AS-Interface V2 bus:

Step Action

1 On the desired address cell (not grayed out) in the bus image:
Double click: access to step 3

OR
Right click:

Result:

Note:
A shortcut menu appears. This is used to:

Configure a new slave on the bus
Modify the configuration of the desired slave
Copy (or Ctrl+C), cut (or Ctrl+X), paste a slave (or Ctrl+V)
Delete a slave (or Del)

Configure Module - TWDNOI10M3 [Position 1]

Description

Master AS-Interface expansion module

Configuration

AS-interface V2 configuration

Std/A Slaves
00

01

02
03
04
05
06
07
08
09

10
11
12
13
14
15
16

XVBC21A

WXA36

/B Slaves

ASI20MT4IE

INOUT24/12Open… Ctrl+O
New…

Cut Ctrl+X
Copy Ctrl+C

Ctrl+N

Paste Ctrl+V

Clear Del

Accept Conf Ctrl+A
TWD USE 10AE 205

Installing the AS-Interface bus
2 In the shortcut menu, select:
"New" to create a new slave: A slave configuration screen is displayed; the
"Address" field shows the selected address, the "Profile" fields are set to F
by default and all other fields in the screen are blank.
"Open" to create a new slave or to modify the configuration of the selected
slave. For a new slave, a new screen for configuring the slave is displayed,
the "Address" field shows the selected address, the "Profile" fields are set
to F by default and all other fields in the screen are blank. For a modification,
the slave configuration screen is displayed with fields containing the values
previously defined for the selected slave.

Illustration of a Configuration Screen for a New Slave:

3 In the slave configuration screen that is then displayed, enter or modify:
the name of the new profile (limited to 13 characters),
a comment (optional).

Or click "Catalog..." and select a slave from the pre-configured AS-Interface
profile family.

4 Enter:
the IO code (corresponds to the input/output configuration),
the ID code (identifier), (plus ID1 and for an extended type).

Note:
The "Inputs" and "Outputs" fields show the number of input and output
channels. They are automatically implemented when the IO code is entered.

Step Action

Configuring an AS-Interface Slave

OK CancelCatalog…

 Permanent Characteristics

IO ID ID1 ID2Profile:

Comment:

 Permanent Parameters

0 2

1 3

DecimalBits

Comment

Parameter 1 Parameter 3

Parameter 2 Parameter 4

Inputs/Outputs

OutputsInputs

F F F F

Name Slave 3A 3AAddress
206 TWD USE 10AE

Installing the AS-Interface bus
5 For each parameter define:
the system's acknowledgement (box checked in "Bits" view, or decimal
value between 0 and 15 in "Decimal" view),
a name that is more meaningful than "Parameter X" (optional).

Note:
The selected parameters are the image of permanent parameters to be
provided to the AS-Interface Master.

6 If needed, modify "Address" (within the limit of available addresses on the bus),
by clicking the up/down arrows to the left of the address (access is then given
to authorized addresses) or by entering the address using the keyboard.

7 Confirm the slave configuration by clicking on the "OK" button.
The result is the check that:

the IO and ID are authorized,
the slave address is authorized (if keyboard entry is used) according to the
ID code ("bank" /B slaves are only available if the ID code is equal to A).

If an error occurs, an error message warns the user (for example: "The slave
cannot have this address") and the screen is displayed again with the initial
values (in the profile or address, depending on the error).

Note: The software limits the number of analog slave declarations to 7.

Note: About the Schneider AS-Interface catalog: when you click Catalog, you can
create and configure slaves in "Private family" (other than those in the Schneider
AS-Interface catalog.

Step Action
TWD USE 10AE 207

Installing the AS-Interface bus
AS-Interface
Catalog

The Catalog button can be used to facilitate configuration of slaves on the bus.
When you use a slave from the Schneider family, use this button to simplify and
speed up configuration.
Clicking on "Catalog" in the window "Configure an AS-Interface slave" opens the
following window:

AS-Interface Catalog

OK Cancel

7.F.F.F
8.F.F.F

XVBC21A
XVA-S102

Profile AS-Interface Name @
std
std

XVB illuminated column base.
XVA illuminated column base.

Comment

Details...

AS-Interface Catalog: Illuminated columns

Up/Down Counter6: Illuminated columns

Families of AS-Interface profiles:
208 TWD USE 10AE

Installing the AS-Interface bus
The drop-down menu gives you access to all the families of the Schneider AS-
Interface catalog:

When you have chosen your family, the list of corresponding slaves appears. Click
on the required slave and validate by clicking "OK"

Note: You can display the characteristics of a slave by clicking "Details".

Note: You can add and configure slaves that are not part of the Schneider catalog.
Simply select the private family and configure the new slave.

AS-Interface Catalog

OK CancelDetails...

Up/Down Counter5: Keyboards

Families of AS-Interface profiles:

6: Illuminated columns
7: Command and signaling
4: Motor-starters
11: Inductive sensors
9: Phototronic sensors
1: Private family
18: Compact IP20 interfaces
12: Telefast IP20 interfaces

5: Keyboards
TWD USE 10AE 209

Installing the AS-Interface bus
Description of the debug screen

At a Glance When the PC is connected to the controller (after uploading the application to the
controller), the "Debug" tab appears to the right of that of "Configuration"; it allows
the debug screen to be accessed.
The debug screen dynamically provides an image of the physical bus that includes
the:

List of expected slaves (entered) during configuration with their name, and the list
of detected slaves (with unknown names, but otherwise expected),
Status of the AS-Interface module and the slave devices,
Image of the profile, parameters and input/output values of the selected slaves.

It also enables the user:
To obtain diagnostics of the slaves on which an error has occurred (See
Displaying Slave Status, p. 212),
To modify the address of a slave in online mode (See Modification of Slave
Address, p. 213),
To transmit the image of the slaves to the configuration screen (See Updating the
AS-Interface bus configuration in online mode, p. 215),
To address all the slaves with the desired addresses (during the first debugging).
210 TWD USE 10AE

Installing the AS-Interface bus
Illustration of the
"Debug" Screen

The illustration of the debug screen (in online mode only) looks like this:

Configure Module - TWDNOI10M3 [Position 2]

OK

Description
Master AS-Interface expansion module

Configuration
AS-interface V2 configuration

Std/A Slaves
00
01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16

XVBC21A

WXA36

/B Slaves

ASI20MT4IE

INOUT24/12

Cancel Help

Characteristics

7IO fID fID1 fID2

 Slave 1A

Profile:

Comment: XVB illuminated column base

 Parameters

0 2

1 3

 Inputs/Outputs

Inputs
0

Value Format Outputs

0
Dec
Dec

%IA1.1A.0
%IA1.1A.1

%QA1.1A.0
%QA1.1A.1

 Error on the network

Debugging

0
Value

0

Format
Dec
DecUnknown

 AS-Interface Bus
Configuration OK
Slaves OK

OFF
ON

Auto addressing
Protected Mode

OFF
OFF

Slave at address 0
Auto addressing active

OFF
ON

Cut in power
Network down

OFF
OFF

DecimalBits
TWD USE 10AE 211

Installing the AS-Interface bus
Description of
the Debug
Screen

The "Debug" screen provides the same information as theconfiguration screen (See
Description of the Screen in Offline Mode, p. 203).
The differences are listed in the following table:

Displaying Slave
Status

When the indicator lamp associated with an address is red, there is an error on the
slave associated with this address. The "Error on the network" window then provides
the diagnostics of the selected slave.
Description of errors:

The profile specified by the user by the configuration of a given address does not
correspond to the actual profile detected for this address on the bus (diagnostics:
"Profile error"),
A new slave, not specified at configuration, is detected on the bus: a red indicator
lamp is then displayed for this address and the slave name displayed is
"Unknown" (diagnostics: "Slave not projected"),
Peripheral fault, if the slave detected supports it (diagnostics: "Peripheral fault"),
A configured profile is specified but no slave is detected for this address on the
bus (diagnostics: "Slave not detected").

Schedule Description

AS-interface V2
configuration

Image of the physical bus.
Includes slave status:

Green indicator lamp: the slave with this address is active.
Red indicator lamp: an error has occurred on the slave at this
address, and the message informs you of the error type in the
"Error on the network" window.

Slave xxA/B Image of the configuration of the selected slave:
Characteristics: image of the profile detected (grayed out, non-
modifiable),
Parameters: image of the parameters detected. The user can
select only the parameter display format,
Inputs/Outputs: the input/output values detected are displayed,
non-modifiable.

Error on the network Informs you of the error type, if an error has occurred on the
selected slave.

AS-Interface Bus Information resulting from an implicit "Read Status" command.
Shows bus status: for example, "Configuration OK = OFF"
indicates that the configuration specified by the user does not
correspond to the physical configuration of the bus,
Shows the authorized functionalities for the AS-Interface Master
module: for example, "Automatic addressing active = ON"
indicates that the automatic addressing Master mode is
authorized.
212 TWD USE 10AE

Installing the AS-Interface bus
Modification of Slave Address

At a Glance From the debug screen, the user can modify the address of a slave in online mode.

Modification of
Slave Address The following table shows the procedure for modifying a slave address:

Step Description

1 Access the "Debug" screen.

2 Select a slave in the "AS-interface V2 Configuration" zone.

3 Drag and drop the slave to the cell corresponding to the desired address.
Illustration: Dragging and dropping slave 3B to address 15B

ASI20MT41E

Configuration
AS-interface V2 configuration

Std/A Slaves
00
01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16

XVBC21A

WXA36

/B Slaves

INOUT24/12

Debugging

Unknown

ASI20MT41E
TWD USE 10AE 213

Installing the AS-Interface bus
Result:
All the slave parameters are automatically checked to see if the operation is possible.
Illustration of result:

After performing this operation, the diagnostics for the slave at address 3B indicate "slave
not detected" meaning that the slave expected at this address is no longer there. By
selecting the address 15B, the profile and the parameters of the moved slave can be re-
located, but the name of the slave remains unknown as it was not expected at this address.

Note: The profile and parameters of a slave are not associated with a name.
Several slaves with different names can have the same profiles and parameters.

Step Description

Configuration
AS-interface V2 configuration

Std/A Slaves
00
01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16

XVBC21A

WXA36

/B Slaves

INOUT24/12

Debugging

Unknown

Unknown

ASI20MT41E
214 TWD USE 10AE

Installing the AS-Interface bus
Updating the AS-Interface bus configuration in online mode

At a Glance In online mode, no modification of the configuration screen is authorized and the
physical configuration and software configuration can be different. Any difference in
profile or parameters for a configured or non-configured slave can be taken into
account in the configuration screen; in fact, it is possible to transmit any modification
to the configuration screen before transferring the new application to the controller.
The procedure to follow in order to take the physical configuration into account is the
following:

Step Description

1 Transfer of the desired slave configuration to the configuration screen.

2 Acceptance of the configuration in the configuration screen.

3 Confirmation of the new configuration.

4 Transfer of the application to the module.
TWD USE 10AE 215

Installing the AS-Interface bus
Transfer of a
Slave Image to
the
Configuration
Screen.

In the case when a slave that is not specified in the configuration is detected on the
bus, an "Unknown" slave appears in the "AS-interface V2 Configuration zone" of the
debug screen for the detected address.
The following table describes the procedure for transferring the image of the
"Unknown" slave to the configuration screen:

Step Description

1 Access the "Debug" screen.

2 Select the desired slave in the "AS-interface V2 Configuration" zone.

3 Right click on the mouse to select "Transfer Conf".
Illustration:

Result:
The image of the selected slave (image of the profile and parameters) is then
transferred to the configuration screen.

4 Repeat the operation for each of the slaves whose image you would like to
transfer to the configuration screen.

Configuration

 AS-interface V2 Configuration

Std /A Slaves
00

01

02
03
04
05
06
07
08
09

10
11
12
13
14
15
16

XVBC21A

WXA36

 /B Slaves

INOUT24/12

Debug

Unkonwn

ASI20MT4IE

Transfer Conf Ctrl+T

Unknown
216 TWD USE 10AE

Installing the AS-Interface bus
Return to the
Configuration
Screen

When the user returns to the configuration screen, all the new slaves (unexpected)
which have been transferred are visible.
Illustration of the configuration screen following the transfer of all slaves:

Key:
The cross signifies that there are differences between the image of the profile of
the transferred slave, and the profile initially desired in the configuration screen.
The exclamation mark signifies that a new profile was added to the configuration
screen.

Explanation:
The configuration screen always shows the permanent image of the desired
configuration (this is why the slave is still present as 3B in spite of the change of
address (See Modification of Slave Address, p. 213)), completed by the current
image of the bus.
The profiles and parameters of the expected slaves displayed correspond to those
which were expected. The profiles and parameters of the unknown slaves displayed
correspond to the images of those detected.

 AS-interface V2 Configuration

Std /A Slaves
00

01

02
03
04
05
06
07
08
09
10
11
12
13
14
15
16

WXA36

/B Slaves

INOUT24/12

Unknown

ASI20MT4IE

XVBC21A

Configuration Debug

Unknown
TWD USE 10AE 217

Installing the AS-Interface bus
Procedure for
Transferring the
Definitive
Application to
the Module

Before transferring a new application to the module, the user can, for each slave,
accept the detected profile and parameters (transferred to the configuration screen)
or modify the configuration "manually" (See Procedure for Declaring and
Configuring a Slave, p. 205).
The following table describes the steps to follow to confirm and transfer the definitive
configuration to the module:

Step Action

1 Via the software, disconnect the PC from the module.
Note:
No modification can be carried out in the configuration screen if the PC is
connected to the module.

2 Right click on the desired slave.

3 2 choices:
Select "Accept Conf" to accept the detected profile of the selected slave.

Illustration:

For each of the slaves marked with a cross, a message will warn the user that
this operation will overwrite the initial profile (displayed on-screen) of the slave.

Select the other choices in the right click menu to configure the selected
slave manually.

 AS-interface V2 Configuration

Std /A Slaves
00

01

02
03
04
05
06
07
08
09

10
11
12
13
14
15
16

WXA36

/B Slaves

Unknown

Unknown

XVBC21A

Configuration

INOUT24/12

Open ... Ctrl+O
New ...

Cut Ctrl+X
Copy Ctrl+C

Ctrl+N

Paste Ctrl+V

Clear Suppr

Accept Conf Ctrl+A

ASI20MT4IE
218 TWD USE 10AE

Installing the AS-Interface bus
4 Repeat the operation for each of the desired slaves in the configuration.

5 Press the "OK" button to confirm and create the new application.
Result: Automatic return to the main screen.

6 Transfer the application to the module.

Step Action
TWD USE 10AE 219

Installing the AS-Interface bus
Automatic addressing of an AS-Interface V2 slave

At a Glance Each slave on the AS-Interface bus must be assigned (via configuration) a unique
physical address. This must be the same as the one declared in TwidoSoft.

TwidoSoft software offers an automatic slave addressing utility so that an AS-
Interface console does not have to be used.
 The automatic addressing utility is used for:

replacing a faulty slave,
inserting a new slave.

Procedure The table below shows the procedure for setting the Automatic addressing
parameter.

Step Action

1 Access the AS-Interface V2 master module’s configuration screen.

2 Click on the Automatic addressing check box found in the Master mode
zone.
Result: The Automatic addressing utility will be activated (box checked) or
disabled (box not checked.
Note: By default, the Automatic addressing parameter has been selected in
the configuration screen.
220 TWD USE 10AE

Installing the AS-Interface bus
How to insert a slave device into an existing AS-Interface V2 configuration

At a Glance It is possible to insert a device into an existing AS-Interface V2 configuration without
having to use the pocket programmer.
This operation is possible once:

the Automatic addressing utility of configuration mode is active (See Automatic
addressing of an AS-Interface V2 slave, p. 220),
a single slave is absent in the physical configuration,
the slave which is to be inserted is specified in the configuration screen,
the slave has the profile expected by the configuration,
the slave has the address 0 (A).

The AS-Interface V2 module will therefore automatically assign to the slave the
value predefined in the configuration.

Procedure The following table shows the procedure for making the automatic insertion of a new
slave effective.

Step Action

1 Add the new slave in the configuration screen in local mode.

2 Carry out a configuration transfer to the PLC in connected mode.

3 Physically link the new slave with address 0 (A) to the AS-Interface V2 bus.

Note: An application can be modified by carrying out the above manipulation as
many times as necessary.
TWD USE 10AE 221

Installing the AS-Interface bus
Automatic replacement of a faulty AS-Interface V2 slave

Principle When a slave has been declared faulty, it can be automatically replaced with a slave
of the same type.
This happens without the AS-Interface V2 bus having to stop, and without requiring
any manipulation since the configuration mode's Automatic addressing utility is
active (See Automatic addressing of an AS-Interface V2 slave, p. 220).

Two options are available:
The replacement slave is programmed with the same address using the pocket
programmer, and has the same profile and sub-profile as the faulty slave. It is
thus automatically inserted into the list of detected slaves (LDS) and into the list
of active slaves (LAS),
The replacement slave is blank (address 0 (A), new slave) and has the same
profile as the faulty slave. It will automatically assume the address of the replaced
slave, and will then be inserted into the list of detected slaves (LDS) and the list
of active slaves (LAS).
222 TWD USE 10AE

Installing the AS-Interface bus
Addressing I/Os associated with slave devices connected to the AS-Interface V2
bus

At a Glance This page presents the details relating to the addressing of digital or analog I/Os of
slave devices.
To avoid confusion with Remote I/Os, new symbols are available with an AS-
Interface syntax: %IA for example.

Illustration Reminder of the principles of addressing:

Specific Values The table below gives specific values to AS-Interface V2 slave objects:

% IA, QA, IWA, QWA . .n i
Type of objectSymbol slave

address
Channel
no.

x
Expansion

module
address

Part Values Comment

 IA - Image of the physical digital input of the
slave.

 QA - Image of the physical digital output of the
slave.

 IWA - Image of the physical analog input of the
slave.

 QWA - Image of the physical analog output of the
slave.

 x 1 to 7 Address of AS-Interface module on the
expansion bus.

n 0A to 31B Slot 0 cannot be configured.

i 0 to 3 -
TWD USE 10AE 223

Installing the AS-Interface bus
Examples The table below shows some examples of I/O addressing:

Implicit
Exchanges

The objects described below are exchanged implicitly, in other words they are
exchanged automatically on each PLC cycle.

I/O object Description

%IWA4.1A.0 Analog input 0 of slave 1A of the AS-Interface module situated in
position 4 on the expansion bus.

%QA2.5B.1 Digital output 1 of slave 5B of the AS-Interface module situated in
position 2 on the expansion bus.

%IA1.12A.2 Digital input 2 of slave 12A of the AS-Interface module situated in
position 1 on the expansion bus.
224 TWD USE 10AE

Installing the AS-Interface bus
Programming and diagnostics for the AS-Interface V2 bus

Explicit
Exchanges

Objects (words and bits) associated with the AS-Interface bus contribute data (for
example: bus operation, slave status, etc.) and additional commands to carry out
advanced programming of the AS-Interface function.
These objects are exchanged explicitly between the Twido controller and the AS-
Interface Master by the expansion bus:

At the request of the program user by way of the instruction: ASI_CMD (see
"Presentation of the ASI_CMD" instruction below)
Via the debug screen or the animation table.

Reserved
Specific System
Words

System words reserved in the Twido controller for the AS-Interface Master modules
enable you to determine the status of the network: %SW73 is reserved for the first
AS-Interface expansion module, and %SW74 for the second. Only the first 5 bits of
these words are used; they are read-only.
The following table shows the bits used:

Example of use (for the first AS-Interface expansion module):
Before using an ASI_CMD instruction, the %SW73:X3 bit must be checked to see
whether an instruction is not in progress: check that %SW73:X3 = 1.
To ascertain whether the instruction has then correctly executed, check that the
%SW73:X4 bit equals 0.

System
Words

Bit Description

%SW73
and
%SW74

0 system status (= 1 if configuration OK, otherwise 0)

1 data exchange (= 1 data exchange is enabled, 0 if in mode
Data Exchange Off (See AS-Interface V2 bus interface
module operating mode:, p. 230))

2 system stopped (= 1 if the Offline (See Offline Mode,
p. 230) mode is enabled, otherwise 0)

3 ASI_CMD instruction terminated (= 1 if terminated, 0 if in
progress)

4 ASI_CMD error instruction (= 1 if there is an error in the
instruction, otherwise 0)
TWD USE 10AE 225

Installing the AS-Interface bus
Presentation of
the ASI_CMD
Instruction

For each user program, the ASI_CMD instruction allows the user to program his
network and obtain the slave diagnostics. The instruction parameters are passed by
internal words (memory words) %MWx.
The syntax of the instruction is as follows:
ASI_CMDn %MWx:l
Legend:

Using the
ASI_CMD
Instruction

The following table describes the action of the ASI_CMD instruction according to the
value of the parameters %MW(x), and %MW(x+1) when necessary. For slave
diagnostics requests, the result is returned in %MW(x+1).

Symbol Description

n Address of AS-Interface expansion module (1 to 7).

x Number of the first internal word (memory word) passed in parameter (0 to
254).

l Length of the instruction in number of words (2).

%MWx %MWx+1 Action

1 0 Exits Offline mode.

1 1 Switches to Offline mode.

2 0 Prohibits the exchange of data between the Master and
its slaves (enters Data Exchange Off mode).

2 1 Authorizes the exchange of data between the Master
and its slaves (exits Data Exchange Off mode).

3 Reserved -

4 Result Reads the list of active slaves (LAS table) with addresses
from 0A to 15A (1 bit per slave).

5 Result Reads the list of active slaves (LAS table) with addresses
from 16A to 31A (1 bit per slave).

6 Result Reads the list of active slaves (LAS table) with addresses
from 0B to 15B (1 bit per slave).

7 Result Reads the list of active slaves (LAS table) with addresses
from 16B to 31B (1 bit per slave).

8 Result Reads the list of detected slaves (LDS table) with
addresses from 0A to 15A (1 bit per slave).

9 Result Reads the list of detected slaves (LDS table) with
addresses from 16A to 31A (1 bit per slave).

10 Result Reads the list of detected slaves (LDS table) with
addresses from 0B to 15B (1 bit per slave).
226 TWD USE 10AE

Installing the AS-Interface bus
11 Result Reads the list of detected slaves (LDS table) with
addresses from 16B to 31B (1 bit per slave).

12 Result Reads the list of peripheral faults on slaves (LPF table)
with addresses 0A to 15A (1 bit per slave).

13 Result Reads the list of peripheral faults on slaves (LPF table)
with addresses 16A to 31A (1 bit per slave).

14 Result Reads the list of peripheral faults on slaves (LPF table)
with addresses 0B to 15B (1 bit per slave).

15 Result Reads the list of peripheral faults on slaves (LPF table)
with addresses 16B to 31B (1 bit per slave).

16 Result Reads bus status.
See the results details in the next paragraph.

Note: Bus status is updated on each PLC scan.. But the result of the ASI_CMD bus
reading instruction is available only at the end if the following PLC scan.

%MWx %MWx+1 Action
TWD USE 10AE 227

Installing the AS-Interface bus
Details of the
results of the
ASI_CMD
instruction to
read bus status

In the case when bus status is read by the ASI_CMD instruction (value of the %MWx
parameter is equal to 16), the format of the result in the %MWx+1 word is as follows:

%MWx+1 Designation (1=OK, 0=NOK)

least significant bit 0 Configuration OK

bit 1 LDS.0 (slave present with address 0)

bit 2 Auto addressing active

bit 3 Auto addressing available

bit 4 Configuration Mode active

bit 5 Normal operation active

bit 6 APF (power supply problem)

bit 7 Offline ready

most significant bit 0 Peripheral fault

bit 1 Data exchange active

bit 2 Offline Mode

bit 3 Normal mode (1)

bit 4 Communication fault with the AS-Interface Master

bit 5 ASI_CMD instruction in progress

bit 6 ASI_CMD instruction error
228 TWD USE 10AE

Installing the AS-Interface bus
Details of the
results of the
ASI_CMD
instruction to
read slave status

In the case of slave diagnostics by ASI_CMD instruction (%MWx value between 4
and 15), the slaves' status is returned in the bits (1=OK) of the %MWx+1 word. The
following table gives the detail of the results according to the value of the %MWx
word:

To read whether slave 20B is active, the ASI_CMD instruction must be executed
with the %MWx internal word having a value of 7. The result is returned in the
%MWx+1 internal word; the status of slave 20B is given by the value of bit 4 of the
least significant byte: If bit 4 is equal to 1, then slave 20B is active.

Programming
Examples for the
ASI_CMD
Instruction

To force the AS-Interface Master (positioned at 1 on the expansion bus) to switch to
Offline mode:
LD 1
[%MW0 := 16#0001]
[%MW1 := 16#0001]
LD %SW73:X3 //If no ASI_CMD instruction is in progress, then continue
[ASI_CMD1 %MW0:2] //to force the switch to Offline mode

To read the table of slaves active for addresses 0A to 15A:
LD 1
[%MW0 := 16#0004]
[%MW1 := 16#0000 //optional]
LD %SW73:X3 //If no ASI_CMD instruction is in progress, then continue
[ASI_CMD1 %MW0:2] //to read the LAS table for addresses 0A to 15A

%MWx %MWx+1

 value most significant byte least significant byte

bit7 bit6 bit5 bit4 bit3 bit2 bit1 bit0 bit7 bit6 bit5 bit4 bit3 bit2 bit1 bit0

4, 8, 12 15A 14A 13A 12A 11A 10A 9A 8A 7A 6A 5A 4A 3A 2A 1A 0A

5, 9, 13 31A 30A 29A 28A 27A 26A 25A 24A 23A 22A 21A 20A 19A 18A 17A 16A

6, 10, 14 15B 14B 13B 12B 11B 10B 9B 8B 7B 6B 5B 4B 3B 2B 1B 0B

7, 11, 15 31B 30B 29B 28B 27B 26B 25B 24B 23B 22B 21B 20B 19B 18B 17B 16B
TWD USE 10AE 229

Installing the AS-Interface bus
AS-Interface V2 bus interface module operating mode:

At a Glance The AS-Interface bus interface module TWDNOI10M3 has three operating modes,
each of which responds to particular needs. These modes are:

Protected mode,
Offline mode,
Data Exchange Off mode.

Using the ASI_CMD (See Presentation of the ASI_CMD Instruction, p. 226)
instruction in a user program allows you to enter or exit these modes.

Protected Mode The protected operating mode is the mode generally used for an application which
is running. It assumes that the AS-Interface V2 module is configured in TwidoSoft.
This:

 continually checks that the list of detected slaves is the same as the list of
expected slaves,
monitors the power supply.

In this mode, a slave will only be activated if it has been declared in the configuration
and been detected.
At power up or during the configuration phase, the Twido controller forces the AS-
Interface module into protected mode.

Offline Mode When the module is put into Offline mode, it first resets all the slaves present to zero
and stops exchanges on the bus. When in Offline mode, the outputs are forced to
zero.
In addition to using the PB2 button on the TWDNOI10M3 AS-Interface module,
Offline mode can also be accessed via the software by using the ASI_CMD (See
Programming Examples for the ASI_CMD Instruction, p. 229) instruction, which also
allows you to exit the mode and return to protected mode.

Data Exchange
Off Mode

When the Data Exchange Off mode is engaged, exchanges on the bus continue to
function, but data is no longer refreshed.
This mode can only be accessed by using the ASI_CMD (See Using the ASI_CMD
Instruction, p. 226) instruction.
230 TWD USE 10AE

TWD USE 10AE
10

Operator Display Operation
At a Glance

Subject of this
Chapter

This chapter provides details for using the optional Twido Operator Display.

What's in this
Chapter?

This chapter contains the following topics:

Topic Page

Operator Display 232

Controller Identification and State Information 235

System Objects and Variables 237

Serial Port Settings 244

Time of Day Clock 245

Real-Time Correction Factor 246
231

Operator Display Operation
Operator Display

Introduction The Operator Display is a Twido option for displaying and controlling application
data and some controller functions such as operating state and the Real-Time Clock
(RTC). This option is available as a cartridge (TWDXCPODC) for the Compact
controllers or as an expansion module (TWDXCPODM) for the Modular controllers.
The Operator Display has two operating modes:

Display Mode: only displays data.
Edit mode: allows you to change data.

Displays and
Functions

The Operator Display provides the following separate displays with the associated
functions you can perform for each display.

Controller Identification and State Information: Operations Display
Display firmware revision and the controller state. Change the controller state
with the Run, Initial, and Stop commands.
System Objects and Variables: Data Display
Select application data by the address: %I, %Q, and all other software objects
on the base controller. Monitor and change the value of a selected software data
object.
Serial Port Settings: Communication Display
Display and modify communication port settings.
Time of Day Clock: Time/Date Display
Display and configure the current date and time (if the RTC is installed).
Real Time Correction: RTC Factor
Display and modify the RTC Correction value for the optional RTC.

Note: The operator display is updated at a specific interval of the controller scan
cycle. This can cause confusion in interpreting the display of dedicated outputs for
%PLS or %PWM pulses. At the time these outputs are sampled, their value will
always be zero, and this value will be displayed.

Note:
1. The TWDLCA•40DRF series of compact controllers have RTC onboard.
2. On all other controllers, time of day clock and real-time correction are only

available if the Real-Time Clock (RTC) option cartridge (TWDXCPRTC) is
installed.
232 TWD USE 10AE

Operator Display Operation
Illustration The following illustration shows a view of the Operator Display, which consists of a
display area and four push-button input keys.

Display area The Operator Display provides an LCD display capable of displaying two lines of
characters:

The first line of the display has three 13-segment characters and four 7-segment
characters.
The second line has one 13-segment character, one 3-segment character (for a
plus/minus sign), and five 7-segment characters.

Input keys The functions of the four input push-buttons depend on the Operator Display mode.

T

V

2

4

31M

2 31

Input keys

Display area

ESC MOD/
ENTER

Key In Display Mode In Edit Mode

ESC Discard changes and return to previous
display.

Go to the next value of an object being
edited.

Advance to next display. Go to the next object type to edit.

MOD/
ENTER

Go to edit mode. Accept changes and return to previous
display.
TWD USE 10AE 233

Operator Display Operation
Selecting and
Navigating the
Displays

The initial display or screen of the Operator Display shows the controller identifi-

cation and state information. Press the push-button to sequence through each
of the displays. The screens for the Time of Day Clock or the Real-Time Correction
Factor are not displayed if the optional RTC cartridge (TWDXCPRTC) is not
detected on the controller.
As a shortcut, press the ESC key to return to the initial display screen. For most
screens, pressing the ESC key will return to the Controller Identification and State
Information screen. Only when editing System Objects and Variables that are not
the initial entry (%I0.0.0), will pressing ESC take you to the first or initial system
object entry.

To modify an object value, instead of pressing the push-button to go to the first
value digit, press the MOD/ENTER key again.
234 TWD USE 10AE

Operator Display Operation
Controller Identification and State Information

Introduction The initial display or screen of the Twido optional Operator Display shows the
Controller Identification and State Information.

Example The firmware revision is displayed in the upper-right corner of the display area, and
the controller state is displayed in the upper-left corner of the display area, as seen
in the following:

R 0 01U N

Firmware
revision

Controller
state
TWD USE 10AE 235

Operator Display Operation
Controller States Controller states include any of the following:
NCF: Not Configured
The controller is in the NCF state until an application is loaded. No other state is
allowed until an application program is loaded. You can test the I/O by modifying
system bit S8 (see System Bits (%S), p. 510).
STP: Stopped
Once an application is present in the controller, the state changes to the STP or
Stopped state. In this state, the application is not running. Inputs are updated and
data values are held at their last value. Outputs are not updated in this state.
INI: Initial
You can choose to change the controller to the INI or initial state only from the
STP state. The application is not running. The controller's inputs are updated and
data values are set to their initial state. No outputs are updated from this state.
RUN: Running
When in the RUN or running state the application is running. The controller's
inputs are updated and data values are set according to the application. This is
the only state where the outputs are updated.
HLT: Halted (User Application Error)
If the controller has entered an ERR or error state, the application is halted. Inputs
are updated and data values are held at their last value. From this state, outputs
are not updated. In this mode, the error code is displayed in the lower-right portion
of the Operator Display as an unsigned decimal value.
NEX: Not Executable (not executable)
An online modification was made to user logic. Consequences: The application
is no longer executable. It will not go back into this state until all causes for the
Non-Executable state have been resolved.

Displaying and
Changing
Controller States

Using the Operator Display, you can change to the INI state from the STP state, or
from STP to RUN, or from RUN to STP. Do the following to change the state of the
controller:

Step Action

1 Press the key until the Operations Display is shown (or press ESC). The current
controller state is displayed in the upper-left corner of the display area.

2 Press the MOD/ENTER key to enter edit mode.

3 Press the key to select a controller state.

4 Press the MOD/ENTER key to accept the modified value, or press the ESC key to
discard any modifications made while in edit mode.
236 TWD USE 10AE

Operator Display Operation
System Objects and Variables

Introduction The optional Operator Display provides these features for monitoring and adjusting
application data:

Select application data by address (such as %I or %Q).
Monitor the value of a selected software object/variable.
Change the value of the currently displayed data object (including forcing inputs
and outputs).

System Objects
and Variables

The following table lists the system objects and variables, in the order accessed, that
can be displayed and modified by the Operator Display.

Object Variable/Attribute Description Access

Input %Ix.y.z Value Read/Force

Output %Qx.y.z Value Read/Write/Force

Timer %TMX.V
%TMX.P
%TMX.Q

Current Value
Preset value
Done

Read/Write
Read/Write
Read

Counter %Cx.V
%Cx.P
%Cx.D
%Cx.E
%Cx.F

Current Value
Preset value
Done
Empty
Full

Read/Write
Read/Write
Read
Read
Read

Memory Bit %Mx Value Read/Write

Word Memory %MWx Value Read/Write

Constant Word %KWx Value Read

System Bit %Sx Value Read/Write

System Word %SWx Value Read/Write

Analog Input %IWx.y.z Value Read

Analog output %QWx.y.z Value Read/Write

Fast Counter %FCx.V
%FCx.VD*
%FCx.P
%FCx.PD*
%FCx.D

Current Value
Current Value
Preset value
Preset value
Done

Read
Read
Read/Write
Read/Write
Read
TWD USE 10AE 237

Operator Display Operation
Very Fast Counter %VFCx.V
%VFCx.VD*
%VFCx.P
%VFCx.PD*
%VFCx.U
%VFCx.C
%VFCx.CD*
%VFCx.S0
%VFCx.S0D*
%VFCx.S1
%VFCx.S1D*
%VFCx.F
%VFCx.T
%VFCx.R
%VFCx.S

Current Value
Current Value
Preset value
Preset value
Count Direction
Catch Value
Catch Value
Threshold 0 Value
Threshold 0 Value
Threshold Value1
Threshold Value1
Overflow
Timebase
Reflex Output Enable
Reflex Input Enable

Read
Read
Read/Write
Read/Write
Read
Read
Read
Read/Write
Read/Write
Read/Write
Read/Write
Read
Read/Write
Read/Write
Read/Write

Input Network Word %INWx.z Value Read

Output Network Word %QNWx.z Value Read/Write

Grafcet %Xx Step Bit Read

Pulse Generator %PLS.N
%PLS.ND*
%PLS.P
%PLS.D
%PLS.Q

Number of Pulses
Number of Pulses
Preset value
Done
Current Output

Read/Write
Read/Write
Read/Write
Read
Read

Pulse Width
Modulator

%PWM.R
%PWM.P

Ratio
Preset value

Read/Write
Read/Write

Drum Controller %DRx.S
%DRx.F

Current Step Number
Full

Read
Read

Step counter %SCx.n Step Counter bit Read/Write

Register %Rx.I
%Rx.O
%Rx.E
%Rx.F

Input
Output
Empty
Full

Read/Write
Read/Write
Read
Read

Shift bit register %SBR.x.yy Register Bit Read/Write

Message %MSGx.D
%MSGx.E

Done
Error

Read
Read

AS-Interface slave
input

%IAx.y.z Value Read/Force

Object Variable/Attribute Description Access
238 TWD USE 10AE

Operator Display Operation
Notes:
1. (*) means a 32-bit double word variable. The double word option is available on

all controllers with the exception of the Twido TWDLC•A10DRF controllers.
2. Variables will not be displayed if they are not used in an application since Twido

uses dynamic memory allocation.
3. If the value of %MW is greater than +32767 or less than -32768, the operator

display will continue to blink.
4. If the value of %SW is greater than 65535, the operator display continues to blink,

except for %SW0 and %SW11. If a value is entered that is more than the limit,
the value will return to the configured value.

5. If a value is entered for %PLS.P that is more than the limit, the value written is the
saturation value.

AS-Interface analog
slave input

%IWAx.y.z Value Read

AS-Interface slave
output

%QAx.y.z Value Read/Write/Force

AS-Interface analog
slave output

%QWAx.y.z Value Read/Write

Object Variable/Attribute Description Access
TWD USE 10AE 239

Operator Display Operation
Displaying and
Modifying
Objects and
Variables

Each type of system object is accessed by starting with the Input Object (%I),
sequencing through to the Message object (%MSG), and finally looping back to the
Input Object (%I).
To display a system object:

Data Values and
Display Formats

In general, the data value for an object or variable is shown as a signed or unsigned
integer in the lower-right of the display area. In addition, all fields suppress leading
zeros for displayed values. The address of each object is displayed on the Operator
Display in one of the following seven formats:

I/O format
AS-Interface slaves I/O format
Function Block Format
Simple Format
Network I/O format
Step Counter Format
Shift bit register format

Step Action

1 Press the key until the Data Display screen is shown.
The Input object ("I") will be displayed in the upper left corner of the display area.
The letter " I " (or the name of the object previously viewed as data) is not blinking.

2 Press the MOD/ENTER key to enter edit mode.
The Input Object "I" character (or previous object name viewed as data) begins
blinking.

3 Press the key to step sequentially through the list of objects.

4 Press the key to step sequentially through the field of an object type and press

the key to increment through the value of that field. You can use the key

and key to navigate and modify all fields of the displayed object.

5 Repeat steps 3 and 4 until editing is complete.

6 Press the MOD/ENTER key to accept the modified values.
Note: The object's name and address have to be validated before accepting any
modifications. That is, they must exist in the configuration of the controller prior to
using the operator display.
Press ESC to discard any changes made in edit mode.
240 TWD USE 10AE

Operator Display Operation
Input/Output
Format

The input/output objects (%I, %Q, %IW and %QW) have three-part addresses (e.g.:
%IX.Y.Z) and are displayed as follows:

Object type and controller address in the upper-left
Expansion address in the upper-center
I/O channel in the upper-right

In the case of a simple input (%I) and output (%Q), the lower-left portion of the
display will contain a character that is either "U" for unforced or "F" for a forced bit.
The force value is displayed in the lower-right of the screen.
The output object %Q0.3.11 appears in the display area as follows:

AS-Interface
slaves I/O format

AS-Interface slave I/O objects (%IA, %QA, %IWA and %QWA) have four-part
addresses (e.g.: %IAx.y.z) and are displayed as follows:

The object type in the upper-left
AS-Interface master address on the expansion bus in the upper-left center
Address of the slave on the AS-Interface bus in the upper-right center
Slave I/O channel in the upper-right.

In the case of a simple input (%IA) and output (%QA), the lower-left portion of the
display will contain a character that is either "U" for unforced or "F" for a forced bit.
The force value is displayed in the lower-right of the screen.
The output object %QA1.3A.2 appears in the display area as follows:

Q

F

0 3 1

1

1

QA

F

1 3A

1

2

TWD USE 10AE 241

Operator Display Operation
Function Block
Format

The function blocks (%TM, %C, %FC, %VFC, %PLS, %PWM, %DR, %R, and
%MSGj) have two-part addresses containing an object number and a variable or
attribute name. They are displayed as follows:

Function block name in the upper-left
Function block number (or instance) in the upper-right
The variable or attribute in the lower-left
Value for the attribute in the lower-right

In the following example, the current value for timer number 123 is set to 1,234.

Simple Format A simple format is used for objects %M, %MW, %KW, %MD, %KD, %MF, %KF, %S,
%SW and %X as follows:

Object number in the upper-right
Signed value for the objects in the lower portion

In the following example, memory word number 67 contains the value +123.

Network Input/
Output Format

The network input/output objects (%INW and %QNW) appear in the display area as
follows:

Object type in the upper-left
Controller address in the upper-center
Object number in the upper-right
Signed value for the object in the lower portion

In the following example, the first input network word of the remote controller
configured at remote address #2 is set to a value -4.

T

V

2

4

31M

2 31

M 6

3

7W

1 2+

I

4

0
-

N W 2
242 TWD USE 10AE

Operator Display Operation
Step Counter
Format

The step counter (%SC) format displays the object number and the step counter bit
as follows:

Object name and number in the upper-left
Step counter bit in the upper right
The value of the step counter bit in the lower portion of the display

In the following example, bit number 129 of step counter number 3 is set to 1.

Shift Bit Register
Format

The shift bit register (%SBR) appears in the display area as follows:
Object name and number in the upper-left
Register bit number in the upper-right
Register bit value in the lower-right

The following example shows the display of shift bit register number 4.

S

1

9C 3 1 2

S

1

9B R 4
TWD USE 10AE 243

Operator Display Operation
Serial Port Settings

Introduction The operator display allows you to display the protocol settings and change the
addresses of all serial ports configured using TwidoSoft. The maximum number of
serial ports is two. In the example below, the first port is configured as Modbus
protocol with an address 123. The second serial port is configured as a remote link
with an address of 4.

Displaying and
Modifying Serial
Port Settings

Twido controllers can support up to two serial ports. To display the serial port
settings using the operator display:

M

R

2

4

31

Step Action

1 Press the key until the Communication Display is shown. The single letter of
the protocol setting of the first serial port ("M", "R", or "A") will be displayed in the
upper left corner of the operator display.

2 Press the MOD/ENTER key to enter the edit mode.

3 Press the key until you are in the field that you wish to modify.

4 Press the key to increment the value of that field.

5 Continue steps 3 and 4 until the address settings are complete.

6 Press the MOD/ENTER key to accept the modified values or ESC to discard any
modifications made while in edit mode.

7

244 TWD USE 10AE

Operator Display Operation
Time of Day Clock

Introduction You can modify the date and time using the operator display if the RTC option
cartridge (TWDXCPRTC) is installed on your Twido controller. The Month is
displayed in the upper-left side of the HMI Display. Until a valid time has been
entered, the month field will contain the value "RTC". The day of the month is
displayed in the upper-right corner of the display. The time of day is in military
format. The hours and minutes are shown in the lower-right corner of the display and
are separated by the letter "h". The example below shows that the RTC is set to
March 28, at 2:22 PM.

Displaying and
Modifying Time
of Day Clock

To display and modify the Time of Day Clock:

Note:
1. The TWDLCA•40DRF series of compact controllers have RTC onboard.
2. On all other controllers, time of day clock and real-time correction are only

available if the Real-Time Clock (RTC) option cartridge (TWDXCPRTC) is
installed.

M 8A R 2

24 h1 2

Step Action

1 Press the key until the Time/Date Display is shown. The month value ("JAN",
"FEB") will be displayed in the upper-left corner of the display area. The value "RTC"
will be displayed in the upper-left corner if no month has been initialized.

2 Press the MOD/ENTER key to enter the edit mode.

3 Press the key until you are in the field that you wish to modify.

4 Press the key increment the value of that field.

5 Continue steps 3 and 4 until the Time of Day value is complete.

6 Press the MOD/ENTER key to accept the modified values or ESC to discard any
modifications made while in edit mode.
TWD USE 10AE 245

Operator Display Operation
Real-Time Correction Factor

Introduction You can display and modify the Real-Time Correction Factor using the operator
display. Each Real-Time Clock (RTC) Option module has a RTC Correction Factor
value that is used to correct for inaccuracies in the RTC module's crystal. The
correction factor is an unsigned 3-digit integer from 0 to 127 and is displayed in the
lower-right corner of the display.
The example below shows a correction factor of 127.

Displaying and
Modifying RTC
Correction

To display and modify the Real-Time Correction Factor:

R T C

21 7

C o r r

Step Action

1 Press the key until the RTC Factor Display is shown. "RTC Corr" will be
displayed in the upper line of the operator display.

2 Press the MOD/ENTER key to enter edit mode.

3 Press the key until you are in the field that you wish to modify.

4 Press the key to increment the value of that field.

5 Continue Steps 3 and 4 until the RTC correction value is complete.

6 Press the MOD/ENTER key to accept the modified values or ESC to discard any
modifications made while in edit mode.
246 TWD USE 10AE

TWD USE 10AE
III

Description of Twido Languages
At a Glance

Subject of this
Part

This part provides instructions for using the Ladder, List, and Grafcet programming
languages to create control programs for Twido programmable controllers.

What's in this
Part?

This part contains the following chapters:

Chapter Chapter Name Page

11 Ladder Language 249

12 Instruction List Language 271

13 Grafcet 283
247

Twido Languages
248 TWD USE 10AE

TWD USE 10AE
11

Ladder Language
At a Glance

Subject of this
Chapter

This chapter describes programming using Ladder Language.

What's in this
Chapter?

This chapter contains the following topics:

Topic Page

Introduction to Ladder Diagrams 250

Programming Principles for Ladder Diagrams 252

Ladder Diagram Blocks 254

Ladder Language Graphic Elements 257

Special Ladder Instructions OPEN and SHORT 260

Programming Advice 261

Ladder/List Reversibility 265

Guidelines for Ladder/List Reversibility 266

Program Documentation 268
249

Ladder Language
Introduction to Ladder Diagrams

Introduction Ladder diagrams are similar to relay logic diagrams that represent relay control
circuits. The main differences between the two are the following features of Ladder
programming that are not found in relay logic diagrams:

All inputs are represented by contact symbols ().
All outputs are represented by coil symbols ().
Numerical operations are included in the graphical Ladder instruction set.

Ladder
Equivalents to
Relay Circuits

The following illustration shows a simplified wiring diagram of a relay logic circuit and
the equivalent Ladder diagram.

Notice that in the above illustration, all inputs associated with a switching device in
the relay logic diagram are shown as contacts in the Ladder diagram. The M1 output
coil in the relay logic diagram is represented with an output coil symbol in the Ladder
diagram. The address numbers appearing above each contact/coil symbol in the
Ladder diagram are references to the locations of the external input/output
connections to the controller.

Relay logic circuit Ladder diagram

LS1 PB1 CR1 M1

LS2 SS1

%I0.2 %I0.4%I0.0

%I0.1 %I0.7

%Q0.4LS1 PB1 CR1 M1

LS2 SS1
250 TWD USE 10AE

Ladder Language
Ladder Rungs A program written in Ladder language is composed of rungs which are sets of
graphical instructions drawn between two vertical potential bars. The rungs are
executed sequentially by the controller.
The set of graphical instructions represent the following functions:

Inputs/outputs of the controller (push buttons, sensors, relays, pilot lights, etc.)
Functions of the controller (timers, counters, etc.)
Math and logic operations (addition, division, AND, XOR, etc.)
Comparison operators and other numerical operations (A<B, A=B, shift, rotate,
etc.)
Internal variables in the controller (bits, words, etc.)

These graphical instructions are arranged with vertical and horizontal connections
leading eventually to one or several outputs and/or actions. A rung cannot support
more than one group of linked instructions.

Example of
Ladder Rungs

The following diagram is an example of a Ladder program composed of two rungs.

%MW22:=%MW15+%KW1

Example Rung 1

Example Rung 2

%I0.1

%I0.3

%M42 %Q1.2

%M42
TWD USE 10AE 251

Ladder Language
Programming Principles for Ladder Diagrams

Programming
Grid

Each Ladder rung consists of a grid of seven rows by eleven columns that are
organized into two zones as shown in the following illustration.

Grid Zones The Ladder diagram programming grid is divided into two zones:
Test Zone
Contains the conditions that are tested in order to perform actions. Consists of
columns 1 - 10, and contains contacts, function blocks, and comparison blocks.
Action Zone
Contains the output or operation that will be performed according to the results of
the tests of the conditions in the Test Zone. Consists of columns 8 - 11, and
contains coils and operation blocks.

Test Zone

Action Zone

2

3

4

6

7

2 43 5 6 7 109 11

5

1

1 8

Rows

Columns

Grid
Cells

Potential
Bars
252 TWD USE 10AE

Ladder Language
Entering
Instructions in
the Grid

A Ladder rung provides a seven by eleven programming grid that starts in the first
cell in the upper left-hand corner of the grid. Programming consists of entering
instructions into the cells of the grid. Test instructions, comparisons, and functions
are entered in cells in the test zone and are left-justified. The test logic provides
continuity to the action zone where coils, numerical operations, and program flow
control instructions are entered and are right-justified.
The rung is solved or executed (tests made and outputs assigned) within the grid
from top to bottom and from left to right.

Rung Headers In addition to the rung, a rung header appears directly above the rung. Use the rung
header to document the logical purpose of the rung. The rung header can contain
the following information:

Rung number
Labels (%Li)
Subroutine declarations (SRi:)
Rung title
Rung comments

For more details about using the rung header to document your programs, see
Program Documentation, p. 268.
TWD USE 10AE 253

Ladder Language
Ladder Diagram Blocks

Introduction Ladder diagrams consist of blocks representing program flow and functions such as
the following:

Contacts
Coils
Program flow instructions
Function blocks
Comparison blocks
Operate blocks

Contacts, Coils,
and Program
Flow

Contacts, coils, and program flow (jump and call) instructions occupy a single cell of
the ladder programming grid. Function blocks, comparison blocks, and operate
blocks occupy multiple cells.
The following are examples of a contact and a coil.

Contact Coil
254 TWD USE 10AE

Ladder Language
Function Blocks Function blocks are placed in the test zone of the programming grid. The block must
appear in the first row; no ladder instructions or lines of continuity may appear above
or below the function block. Ladder test instructions lead to the function block’s input
side, and test instructions and/or action instructions lead from the block’s output
side.
Function blocks are vertically oriented and occupy two columns by four rows of the
programming grid.
The following is an example of a counter function block.

R

S

CU

CD

E

D

F

%C0

ADJ Y
%C0.P 9999
TWD USE 10AE 255

Ladder Language
Comparison
Blocks

Comparison blocks are placed in the test zone of the programming grid. The block
may appear in any row or column in the test zone as long as the entire length of the
instruction resides in the test zone.
Comparison blocks are horizontally oriented and occupy two columns by one row of
the programming grid.
See the following example of a comparison block.

Operate blocks Operate blocks are placed in the action zone of the programming grid. The block
may appear in any row in the action zone. The instruction is right-justified; it appears
on the right and ends in the last column.
Operate blocks are horizontally oriented and occupy four columns by one row of the
programming grid.
 The following is an example of an operate block.

%MW0=%SW50

%MW120 := SQRT (%MW15)
256 TWD USE 10AE

Ladder Language
Ladder Language Graphic Elements

Introduction Instructions in Ladder diagrams consist of graphic elements.

Contacts The contacts graphic elements are programmed in the test zone and take up one
cell (one row high by one column wide).

Link Elements The graphic link elements are used to connect the test and action graphic elements.

Name Graphic
element

Instruction Function

Normally open contact LD Passing contact when the
controlling bit object is at state 1.

Normally closed
contact

LDN Passing contact when the
controlling bit object is at state 0.

Contact for detecting a
rising edge

LDR Rising edge: detecting the change
from 0 to 1 of the controlling bit
object.

Contact for detecting a
falling edge

LDF Falling edge: detecting the change
from 1 to 0 of the controlling bit
object.

P

N

Name Graphic
element

Function

Horizontal connection Links in series the test and action graphic
elements between the two potential bars.

Vertical connection Links the test and action graphic elements in
parallel.
TWD USE 10AE 257

Ladder Language
Coils The coil graphic elements are programmed in the action zone and take up one cell
(one row high and one column wide).

Name Graphic
element

Instruction Function

Direct coil ST The associated bit object takes the
value of the test zone result.

Inverse coil STN The associated bit object takes the
negated value of the test zone result.

Set coil S The associated bit object is set to 1
when the result of the test zone is 1.

Reset coil R The associated bit object is set to 0
when the result of the test zone is 1.

Jump or Subroutine
call

JMP
SR

Connect to a labeled instruction,
upstream or downstream.

Transition condition
coil

Grafcet language. Used when the
programming of the transition
conditions associated with the
transitions causes a changeover to the
next step.

Return from a
subroutine

RET Placed at the end of subroutines to
return to the main program.

Stop program END Defines the end of the program.

S

R

->>%Li
->>%SRi

#

<RET>

<END>
258 TWD USE 10AE

Ladder Language
Function blocks The graphic elements of function blocks are programmed in the test zone and
require four rows by two columns of cells (except for very fast counters which require
five rows by two columns).

Operate and
Comparison
Blocks

Comparison blocks are programmed in the test zone, and operate blocks are
programmed in the action zone.

Name Graphic
element

Function

Timers, counters,
registers, and so on.

Each of the function blocks uses inputs and outputs
that enable links to the other graphic elements..
Note: Outputs of function blocks can not be
connected to each other (vertical shorts).

Name Graphic
element

Function

Comparison block Compares two operands, the output changes to 1
when the result is checked.
Size: one row by two columns

Operation block Performs arithmetic and logic operations.
Size: one row by four columns
TWD USE 10AE 259

Ladder Language
Special Ladder Instructions OPEN and SHORT

Introduction The OPEN and SHORT instructions provide a convenient method for debugging
and troubleshooting Ladder programs. These special instructions alter the logic of a
rung by either shorting or opening the continuity of a rung as explained in the
following table.

In List programming, the OR and AND instructions are used to create the OPEN and
SHORT instructions using immediate values of 0 and 1 respectively.

Examples The following are examples of using the OPEN and SHORT instructions.

Instruction Description List Instruction

OPEN Creates a break in the continuity of a ladder
rung regardless of the results of the last
logical operation.

AND 0

SHORT Allows the continuity to pass through the
rung regardless of the results of the last
logical operation.

OR 1

LD %I0.1
OR %Q1.5
ANDN %M3
AND 0
ST %Q0.1
LD %I0.9
OR 1
ST %Q1.6

%Q1.6%I0.9

%Q0.1%M3%I0.1

%Q1.5

OPEN

SHORT
260 TWD USE 10AE

Ladder Language
Programming Advice

Handling
Program Jumps

Use program jumps with caution to avoid long loops that can increase scan time.
Avoid jumps to instructions that are located upstream. (An upstream instruction line
appears before a jump in a program. A downstream instruction line appears after a
jump in a program.).

Programming of
Outputs

Output bits, like internal bits, should only be modified once in the program. In the
case of output bits, only the last value scanned is taken into account when the
outputs are updated.

Using Directly-
Wired
Emergency Stop
Sensors

Sensors used directly for emergency stops must not be processed by the controller.
They must be connected directly to the corresponding outputs.

Handling Power
Returns

Make power returns conditional on a manual operation. An automatic restart of the
installation could cause unexpected operation of equipment (use system bits %S0,
%S1 and %S9).

Time and
Schedule Block
Management

The state of system bit %S51, which indicates any RTC faults, should be checked.

Syntax and Error
Checking

When a program is entered, TwidoSoft checks the syntax of the instructions, the
operands, and their association.

Additional Notes
on Using
Parentheses

Assignment operations should not be placed within parentheses:

LD %I0.0
AND %I0.1
OR(%I0.2
ST %Q0.0
AND %I0.3
)
ST %Q0.1

%I0.0 %I0.1

%I0.2 %I0.3

%Q0.1

%Q0.0
TWD USE 10AE 261

Ladder Language
In order to perform the same function, the following equations must be programmed:

If several contacts are parellelized, they must be nested within each other or
completely separate:

LD %I0.0
MPS
AND(%I0.1
OR(%I0.2
AND %I0.3
)
)
ST %Q0.1
MPP
AND %I0.2
ST %Q0.0

%I0.0 %I0.1

%I0.2

%I0.2

%I0.3

%Q0.1

%Q0.0

%I0.0 %I0.1 %I0.5 %Q0.1

%I0.2 %I0.3

%I0.6 %I0.7

%I0.0 %I0.1 %I0.5 %Q0.1

%I0.2 %I0.4
262 TWD USE 10AE

Ladder Language
The following schematics cannot be programmed:

%I0.0 %I0.1 %Q0.1

%I0.2 %I0.3

%I0.4

%I0.0 %I0.1 %I0.5 %Q0.1

%I0.2 %I0.3

%I0.4
TWD USE 10AE 263

Ladder Language
In order to execute schematics equivalent to those, they must be modified as
follows:

LD %I0.0
AND(%I0.1
OR(%I0.2
AND %I0.3
)
)
OR(%I0.4
AND %I0.3
)
ST %Q0.1

LD %I0.0
AND(%I0.1
OR(%I0.2
AND %I0.3
)
AND %I0.5
OR(%I0.2
AND %I0.4
)
)
ST %Q0.1

%I0.0 %I0.1

%I0.2 %I0.3

%I0.4 %I0.3

%I0.0 %I0.1 %I0.5 %Q0.1

%I0.2 %I0.3

%I0.2 %I0.4

%Q0.1
264 TWD USE 10AE

Ladder Language
Ladder/List Reversibility

Introduction Program reversibility is a feature of the TwidoSoft programming software that
provides conversion of application programs from Ladder to List and from List back
to Ladder.
Use TwidoSoft to set the default display of programs: either List or Ladder format (by
setting user preferences). TwidoSoft can also be used to toggle List and Ladder
views.

Understanding
Reversibility

A key to understanding the program reversibility feature is examining the
relationship of a Ladder rung and the associated instruction List sequence:

Ladder rung: A collection of Ladder instructions that constitute a logical
expression.
List sequence: A collection of List programming instructions that correspond to
the Ladder instructions and represents the same logical expression.

The following illustration displays a common Ladder rung and its equivalent program
logic expressed as a sequence of List instructions.

An application program is stored internally as List instructions, regardless if the
program is written in Ladder language or List language. TwidoSoft takes advantage
of the program structure similarities between the two languages and uses this
internal List image of the program to display it in the List and Ladder viewers and
editors as either a List program (its basic form), or graphically as a Ladder diagram,
depending upon the selected user preference.

Ensuring
Reversibility

Programs created in Ladder can always be reversed to List. However, some List
logic may not reverse to Ladder. To ensure reversibility from List to Ladder, it is
important to follow the set of List programming guidelines in Guidelines for Ladder/
List Reversibility, p. 266.

LD %I0.5
OR %I0.4
ST %Q0.4

%I0.5 %Q0.4

%I0.4
TWD USE 10AE 265

Ladder Language
Guidelines for Ladder/List Reversibility

Instructions
Required for
Reversibility

The structure of a reversible function block in List language requires the use of the
following instructions:

BLK marks the block start, and defines the beginning of the rung and the start of
the input portion to the block.
OUT_BLK marks the beginning of the output portion of the block.
END_BLK marks the end of the block and the rung.

The use of the reversible function block instructions are not mandatory for a properly
functioning List program. For some instructions it is possible to program in List which
is not reversible. For a description of non-reversible List programming of standard
function blocks, see Standard function blocks programming principles, p. 319.

Non-Equivalent
Instructions to
Avoid

Avoid the use of certain List instructions, or certain combinations of instructions and
operands, which have no equivalents in Ladder diagrams. For example, the N
instruction (inverses the value in the Boolean accumulator) has no equivalent
Ladder instruction.
The following table identifies all List programming instructions that will not reverse
to Ladder.

List Instruction Operand Description

JMPCN %Li Jump Conditional Not

N none Negation (Not)

ENDCN none End Conditional Not
266 TWD USE 10AE

Ladder Language
Unconditional
Rungs

Programming unconditional rungs also requires following List programming
guidelines to ensure List-to-Ladder reversibility. Unconditional rungs do not have
tests or conditions. The outputs or action instructions are always energized or
executed.
The following diagram provides examples of unconditional rungs and the equivalent
List sequence.

Notice that each of the above unconditional List sequences begin with a load
instruction followed by a one, except for the JMP instruction. This combination sets
the Boolean accumulator value to one, and therefore sets the coil (store instruction)
to one and sets%MW5 to zero on every scan of the program. The exception is the
unconditional jump List instruction (JMP %L6) which is executed regardless of the
value of the accumulator and does not need the accumulator set to one.

Ladder List
Rungs

If a List program is reversed that is not completely reversible, the reversible portions
are displayed in the Ladder view and the irreversible portions are displayed in
Ladder List Rungs.
A Ladder List Rung functions just like a small List editor, allowing the user to view
and modify the irreversible parts of a Ladder program.

LD 1
ST %Q0.4
LD 1
[%MW5 := 0]
JMP %L6

%Q0.4

%MW5 := 0

>>%L6
TWD USE 10AE 267

Ladder Language
Program Documentation

Documenting
Your Program

You can document your program by entering comments using the List and Ladder
editors:

Use the List Editor to document your program with List Line Comments. These
comments may appear on the same line as programming instructions, or they
may appear on lines of their own.
Use the Ladder Editor to document your program using rung headers. These are
found directly above the rung.

The TwidoSoft programming software uses these comments for reversibility. When
reversing a program from List to Ladder, TwidoSoft uses some of the List comments
to construct a rung header. For this, the comments inserted between List sequences
are used for rung headers.

Example of List
Line Comments

The following is an example of a List program with List Line Comments.

Reversing List
Comments to
Ladder

When List instructions are reversed to a Ladder diagram, List Line Comments are
displayed in the Ladder Editor according to the following rules:

The first comment that is on a line by itself is assigned as the rung header.
Any comments found after the first become the body of the rung.
Once the body lines of the header are occupied, then the rest of the line
comments between List sequences are ignored, as are any comments that are
found on list lines that also contain list instructions.

---- (* THIS IS THE TITLE OF THE HEADER FOR RUNG 0 *)
---- (* THIS IS THE FIRST HEADER COMMENT FOR RUNG 0 *)
---- (* THIS IS THE SECOND HEADER COMMENT FOR RUNG 0 *)

0 LD % I0. 0 (* THIS IS A LINE COMMENT *)
1 OR %I0. 1 (* A LINE COMMENT IS IGNORED WHEN REVERSING TO LADDER *)
2 ANDM %M10
3 ST M101

---- (* THIS IS THE HEADER FOR RUNG 1 *)
---- (* THIS RUNG CONTAINS A LABEL *)
---- (* THIS IS THE SECOND HEADER COMMENT FOR RUNG 1 *)
---- (* THIS IS THE THIRD HEADER COMMENT FOR RUNG 1 *)
---- (* THIS IS THE FOURTH HEADER COMMENT FOR RUNG 1 *)

4 % L5:
5 LD %M101
6 [%MW20 := %KW2 * 16]

---- (* THIS RUNG ONLY CONTAINS A HEADER TITLE *)
7 LD %Q0. 5
8 OR %I0. 3
9 ORR I0. 13

10 ST %Q0.5
268 TWD USE 10AE

Ladder Language
Example of Rung
Header
Comments

The following is an example of a Ladder program with rung header comments.

Reversing
Ladder
Comments to
List

When a Ladder diagram is reversed to List instructions, rung header comments are
displayed in the List Editor according to the following rules:

Any rung header comments are inserted between the associated List sequences.
Any labels (%Li:) or subroutine declarations (SRi:) are placed on the next line
following the header and immediately prior to the List sequence.
If the List was reversed to Ladder, any comments that were ignored will reappear
in the List Editor.

RUNG 0 THIS IS THE TITLE OF THE HEADER FOR RUNG 0.
 THIS IS THE FIRST HEADER COMMENT FOR RUNG 0

RUNG 1 THIS IS THE HEADER FILE FOR RUNG 1
%L5 THIS RUNG CONTAINS A LABEL

RUNG 2 THIS RUNG CONTAINS ONLY A HEADER FILE

%MW20 :- %KW2*16

%I0.0

%I0.1

M101%M10

%M101

%Q0.5

%I0.3

%Q0.5
TWD USE 10AE 269

Ladder Language
270 TWD USE 10AE

TWD USE 10AE
12

Instruction List Language
At a Glance

Subject of this
Chapter

This chapter describes programming using Instruction List Language.

What's in this
Chapter?

This chapter contains the following topics:

Topic Page

Overview of List Programs 272

Operation of List Instructions 274

List Language Instructions 275

Using Parentheses 278

Stack Instructions (MPS, MRD, MPP) 280
271

Instruction List Language
Overview of List Programs

Introduction A program written in List language consists of a series of instructions executed
sequentially by the controller. Each List instruction is represented by a single
program line and consists of three components:

Line number
Instruction code
Operand(s)

Example of a List
Program

The following is an example of a List program.

Line Number Line numbers are generated automatically when you enter an instruction. Blank
lines and Comment lines do not have line numbers.

Instruction Code The instruction code is a symbol for an operator that identifies the operation to be
performed using the operand(s). Typical operators specify Boolean and numerical
operations.
For example, in the sample program above, LD is the abbreviation for the instruction
code for a LOAD instruction. The LOAD instruction places (loads) the value of the
operand %I0.1 into an internal register called the accumulator.
There are basically two types of instructions:

Test instructions
These setup or test for the necessary conditions to perform an action. For
example, LOAD (LD) and AND.
Action instructions
These perform actions as a result of setup conditions. For example, assignment
instructions such as STORE (ST) and RESET (R).

1 ST %Q0.3
2 LDN %M0
3 ST %Q0.2
4 LDR %I0.2
5 ST %Q0.4
6 LDF %I0.3
7 ST %Q0.5

%I0.1LD

Operand(s)

Line Number

Instruction Code

0

0 LD %I0.1
272 TWD USE 10AE

Instruction List Language
Operand An operand is a number, address, or symbol representing a value that a program
can manipulate in an instruction. For example, in the sample program above, the
operand %I0.1 is an address assigned the value of an input to the controller. An
instruction can have from zero to three operands depending on the type of
instruction code.
Operands can represent the following:

Controller inputs and outputs such as sensors, push buttons, and relays.
Predefined system functions such as timers and counters.
Arithmetic, logical, comparison, and numerical operations.
Controller internal variables such as bits and words.
TWD USE 10AE 273

Instruction List Language
Operation of List Instructions

Introduction List instructions have only one explicit operand, the other operand is implied. The
implied operand is the value in the Boolean accumulator. For example, in the
instruction LD %I0.1, %I0.1 is the explicit operand. An implicit operand is stored in
the accumulator and will be written over by value of %I0.1.

Operation A List instruction performs a specified operation on the contents of the accumulator
and the explicit operand, and replaces the contents of the accumulator with the
result. For example, the operation AND %I1.2 performs a logical AND between the
contents of the accumulator and the Input 1.2 and will replace the contents of the
accumulator with this result.
All Boolean instructions, except for Load, Store, and Not, operate on two operands.
The value of the two operands can be either True or False, and program execution
of the instructions produces a single value: either True or False. Load instructions
place the value of the operand in the accumulator, while Store instructions transfer
the value in the accumulator to the operand. The Not instruction has no explicit
operands and simply inverts the state of the accumulator.

Supported List
Instructions

The following table shows a selection of instructions in List Instruction language:

Type of Instruction Example Function

Bit instruction LD %M10 Reads internal bit %M10

Block instruction IN %TM0 Starts the timer %TM0

Word instruction [%MW10 := %MW50+100] Addition operation

Program instruction SR5 Calls subroutine #5

Grafcet instruction -*-8 Step #8
274 TWD USE 10AE

Instruction List Language
List Language Instructions

Introduction List language consists of the following types of instructions:
Test Instructions
Action instructions
Function block instructions

This section identifies and describes the Twido instructions for List programming.

Test Instructions The following table describes test instructions in List language.

Name Equivalent
graphic
element

Function

LD The Boolean result is the same as the status of the
operand.

LDN The Boolean result is the same as the reverse status of the
operand.

LDR The Boolean result changes to 1 on detection of the
operand (rising edge) changing from 0 to 1.

LDF The Boolean result changes to 1 on detection of the
operand (falling edge) changing from 1 to 0.

AND The Boolean result is equal to the AND logic between the
Boolean result of the previous instruction and the status of
the operand.

ANDN The Boolean result is equal to the AND logic between the
Boolean result of the previous instruction and the reverse
status of the operand.

ANDR The Boolean result is equal to the AND logic between the
Boolean result of the previous instruction and the detection
of the operand's rising edge (1 = rising edge).

ANDF The Boolean result is equal to the AND logic between the
Boolean result of the previous instruction and the detection
of the operand's falling edge (1 = falling edge).

OR The Boolean result is equal to the OR logic between the
Boolean result of the previous instruction and the status of
the operand.

P

N

P

N

TWD USE 10AE 275

Instruction List Language
Action
instructions

The following table describes action instructions in List language.

AND(Logic AND (8 parenthesis levels)

OR(Logic OR (8 parenthesis levels)

XOR, XORN,
XORR, XORF

Exclusive OR

MPS
MRD
MPP

Switching to the coils.

N - Negation (NOT)

Name Equivalent
graphic
element

Function

XORR

XORF

XORN

XOR

Name Equivalent
graphic
element

Function

ST The associated operand takes the value of the test zone
result.

STN The associated operand takes the reverse value of the test
zone result.

S The associated operand is set to 1 when the result of the
test zone is 1.

R The associated operand is set to 0 when the result of the
test zone is 1.

S

R

276 TWD USE 10AE

Instruction List Language
Function Block
Instructions

The following table describes function blocks in List language.

JMP Connect unconditionally to a labeled sequence, upstream
or downstream.

SRn Connection at the beginning of a subroutine.

RET Return from a subroutine.

END End of program.

ENDC End of the conditioned program at a Boolean result of 1.

ENDCN End of the conditioned program at a Boolean result of 0.

Name Equivalent
graphic
element

Function

->>%Li

->>%SRi

<RET>

<END>

<ENDC>

<ENDCN>

Name Equivalent
graphic
element

Function

Timers, counters,
registers, and so on.

For each of the function blocks, there are
instructions for controlling the block.
A structured form is used to hardwire the block
inputs and outputs directly.
Note: Outputs of function blocks can not be
connected to each other (vertical shorts).
TWD USE 10AE 277

Instruction List Language
Using Parentheses

Introduction In AND and OR logical instructions, parentheses are use to specify divergences in
Ladder Editors. Parentheses are associated with instructions, as follows:

Opening the parentheses is associated with the AND or OR instruction.
Closing the parentheses is an instruction which is required for each open
parentheses.

Example Using
an AND
Instruction

The following diagrams are examples of using a parentheses with an AND
instruction: AND(...).

Example Using
an OR
Instruction

The following diagrams are examples of using parentheses with an OR instruction:
OR(...).

LD %I0.0
AND %I0.1
OR %I0.2
ST %Q0.0

LD %I0.0
AND(%I0.1
OR %I0.2
)
ST %Q0.1

%Q0.1

%Q0.0

%I0.2

%I0.0

%I0.1

%I0.2

%I0.0

%I0.1

LD %I0.0
AND %I0.1
OR(%I0.2
AND %I0.3
)
ST %Q0.0

%Q0.0%I0.0 %I0.1

%I0.2 %I0.3
278 TWD USE 10AE

Instruction List Language
Modifiers The following table lists modifiers that can be assigned to parentheses.

Nesting
Parenthesis

It is possible to nest up to eight levels of parentheses.
Observe the following rules when nesting parentheses:

Each open parentheses must have a corresponding closed parentheses.
Labels (%Li:), subroutines (SRi:), jump instructions (JMP), and function block
instructions must not be placed in expressions between parentheses.
Store instructions ST, STN, S, and R must not be programmed between
parentheses.
Stack instructions MPS, MRD, and MPP cannot be used between parentheses.

Examples of
Nesting
Parentheses

The following diagrams provide examples of nesting parentheses.

Modifier Function Example

N Negation AND(N or OR(N

F Falling edge AND(F or OR(F

R Rising edge AND(R or OR(R

[Comparison See Comparison Instructions, p. 347

LD %I0.0
AND(%I0.1
OR(N %I0.2
AND %M3
)
)
ST %Q0.0

LD %I0.1
AND(%I0.2
AND %I0.3
OR(%I0.5
AND %I0.6
)
AND %I0.4
OR(%I0.7
AND %I0.8
)
)
ST %Q0.0

%Q0.0

%Q0.0%I0.1

%I0.0 %I0.1

%I0.2 %M3

%I0.2 %I0.3 %I0.4

%I0.6%I0.5

%I0.7 %I0.8
TWD USE 10AE 279

Instruction List Language
Stack Instructions (MPS, MRD, MPP)

Introduction The Stack instructions process routing to coils.The MPS, MRD, and MPP
instructions use a temporary storage area called the stack which can store up to
eight Boolean expressions.

Operation of
Stack
Instructions

The following table describes the operation of the three stack instructions.

Examples of
Stack
Instructions

The following diagrams are examples of using stack instructions.

Note: These instructions can not be used within an expression between
parentheses.

Instruction Description Function

MPS Memory Push onto stack Stores the result of the last logical instruction
(contents of the accumulator) onto the top of
stack (a push) and shifts the other values to the
bottom of the stack.

MRD Memory Read from stack Reads the top of stack into the accumulator.

MPP Memory Pop from stack Copies the value at the top of stack into the
accumulator (a pop) and shifts the other values
towards the top of the stack.

LD %I0.0
AND %M1
MPS
AND %I0.1
ST %Q0.0
MRD
AND %I0.2
ST %Q0.1
MRD
AND %I0.3
ST %Q0.2
MPP
AND %I0.4
ST %Q0.3

%Q0.0

%Q0.1

%Q0.3

%Q0.2

%M1

%I0.2

%I0.3

%I0.4

%I0.1%I0.0

MPS

MPP

MRD
280 TWD USE 10AE

Instruction List Language
Examples of
Stack Operation

The following diagrams display how stack instructions operate.

LD %I0.0
MPS
AND %I0.1
MPS
AND(%I0.3
OR %M0
)
ST %Q0.0
MPP
ANDN %M1
ST %Q0.1
MRD
AND %I0.4
ST %Q0.2
MPP
AND %M10
ST %Q0.3

%Q0.0

%I0.4

%Q0.1

%Q0.2

%Q0.3

%I0.0 %I0.1 %I0.3

%M0

%M1

%M10
TWD USE 10AE 281

Instruction List Language
282 TWD USE 10AE

TWD USE 10AE
13

Grafcet
At a Glance

Subject of this
Chapter

This chapter describes programming using Grafcet Language.

What's in this
Chapter?

This chapter contains the following topics:

Topic Page

Description of Grafcet Instructions 284

Description of Grafcet Program Structure 289

Actions Associated with Grafcet Steps 293
283

Grafcet
Description of Grafcet Instructions

Introduction Grafcet instructions in TwidoSoft offer a simple method of translating a control
sequence (Grafcet chart).
The maximum number of Grafcet steps depend on the type of Twido controller. The
number of steps active at any one time is limited only by the total number of steps.
For the TWDLCAA10DRF and the TWDLCAA16DRF, steps 1 through 62 are
available. Steps 0 and 63 are reserved for pre- and post-processing. For all other
controllers, steps 1 through 95 are available.
284 TWD USE 10AE

Grafcet
Grafcet
Instructions

The following table lists all instructions and objects required to program a Grafcet
chart:

(1) The graphic representation is not taken into account.
(2) The first step =*=i or -*-i written indicates the start of sequential processing and
thus the end of preprocessing.

Graphic
representation (1)

Transcription in
TwidoSoft language

Function

Illustration:
=*= i Start the initial step (2)

i Activate step i after deactivating the
current step

-*- i Start step i and validate the associated
transition (2)

Deactivate the current step without
activating any other steps

#Di Deactivate step i and the current step

=*= POST Start post-processing and end
sequential processing

%Xi Bit associated with step i, can be tested
and written (maximum number of steps
depends on controller)

LD %Xi, LDN %Xi
AND %Xi, ANDN %Xi,
OR %Xi, ORN %Xi
XOR %Xi, XORN %Xi

Test the activity of step i

S %Xi Activate step i

R %Xi Deactivate step i

Xi
R

Xi
S

Xi

Initial step

Transition

Step
TWD USE 10AE 285

Grafcet
Grafcet
Examples

Linear sequence:

LD %I0.5
ST %S21
=*= 1
LD %I0.1
 # 2
-*- 2
LD %I0.2
 # 3
-*- 3
LD %I0.3
 # 1
=*= POST
LD %X1
ST %Q0.1
LD %X2
ST %Q0.2
LD %X3
ST %Q0.3

1

3

2

%I0.1

%I0.2

%I0.5

%I0.1

%S21

2

#

Not supported Twido Ladder Twido Instruction
Language programme List programme

%I0.2

- * - 2

3

#

= * = 1

- * - 2

%I0.3

= * = POST

1

#

%X1 %Q0.1

%X2 %Q0.2

%X3 %Q0.3

%I0.5

%Q0.2

%Q0.1

%I0.3

%Q0.3
286 TWD USE 10AE

Grafcet
Alternative sequence:

 - * - 5

=*= 4
 LD %I0.3
 # 5
 LD %I0.4
 # 6

 -*- 5
 LD %I0.5
 # 7

-*- 6
 LD %I0.6
 # 7

4

5 6

7
 - * - 6

%I0.3 %I0.4

%I0.5 %I0.6

=* = 4

%I0.3 5

#

%I0.4 6

#

%I0.5 7

#

%I0.6 7

#

Not supported Twido Ladder Twido Instruction
Language programme List programme
TWD USE 10AE 287

Grafcet
Simultaneous sequences:

Note: For a Grafcet Chart to be operational, at least one active step must be
declared using the =*=i instruction (initial step) or the chart should be pre-
positioned during preprocessing using system bit %S23 and the instruction S %Xi.

 -*- 8
 LD %I0.7
 # 9
 # 10

-*- 9
 LD %I0.8
 # 11

-*- 10
 LD %I0.9
 # 12

-*- 11
 LD %M0
 AND %X12
 #D 12
 # 13

-*- 12
 LD %M0
 AND %X11
 #D 11
 # 13

 - * - 12

8

9 10

11 12

13

#

#

#

#

#

#

#D

#D

%I0.8

%I0.7

%I0.9

%M0

- * - 8

%I0.7

- * - 9

9

10

11%I0.8

- * - 10

%I0.9 12

12

- * - 11

%M0 %X12

13

11

13

%M0 %X11

Not supported Twido Ladder Twido Instruction
Language programme List programme
288 TWD USE 10AE

Grafcet
Description of Grafcet Program Structure

Introduction A TwidoSoft Grafcet program has three parts:
Preprocessing
Sequential processing
Post-Processing
TWD USE 10AE 289

Grafcet
Preprocessing Preprocessing consists of the following:
Power returns
Faults
Changes of operating mode
Pre-positioning Grafcet steps
Input logic

The rising edge of input %I0.6 sets bit %S21 to 1. This disables the active steps and
enables the inactive steps.

Preprocessing begins with the first line of the program and ends with the first
occurrence of a "= * =" or "- * -" instruction.
Three system bits are dedicated to Grafcet control: %S21, %S22 and %S23. Each
of these system bits are set to 1 (if needed) by the application, normally in
preprocessing. The associated function is performed by the system at the end of
preprocessing and the system bit is then reset to 0 by the system.

System Bit Name Description

%S21 Grafcet
initialization

All active steps are deactivated and the initial steps are
activated.

%S22 Grafcet re-
initialization

All steps are deactivated.

%S23 Grafcet pre-
positioning

This bit must be set to 1 if %Xi objects are explicitly
written by the application in preprocessing. If this bit is
maintained to 1 by the preprocessing without any
explicit change of the %Xi objects, Grafcet is frozen (no
updates are taken into account).

000 LDN %I0.6
001 S %S22
002 ST %M0
003 LDR %I0.6
004 S %S21

 /

 P S

S

%I0.6

%I0.6

%S22

%M0

%S21
290 TWD USE 10AE

Grafcet
Sequential
Processing

Sequential processing takes place in the chart (instructions representing the chart):
Steps
Actions associated with steps
Transitions
Transition conditions

Example:

Sequential processing ends with the execution of the "= * = POST" instruction or with
the end of the program.

005 =*= 1
006 LD %I0.2
007 ANDN %I0.3
008 # 2
009 LD %I0.3
010 ANDN %I0.2
011 # 3
012 -*- 2
013 LD %I0.4
014 # 1
015 -*- 3
016 LD %I0.5
017 # 1

 /

 /

=*= 1

-*- 2

-*- 3

#

#

#

#

3

2

1

1%I0.5

%I0.4

%I0.3

%I0.3

%I0.2

%I0.2
TWD USE 10AE 291

Grafcet
Post-Processing Post-processing consists of the following:
Commands from the sequential processing for controlling the outputs
Safety interlocks specific to the outputs

Example:

018 =*= POST
019 LD %X1
020 ST %Q0.1
021 LD %X2
022 ST %Q0.2
023 LD %X3
024 OR(%M1
025 ANDN %I0.2
026 AND %I0.7
027)
028 ST %Q0.3

 /

%X1

%X2

%M1 %I0.2 %I0.7

%Q0.3

%Q0.2

%Q0.1

%X3

=*= POST
292 TWD USE 10AE

Grafcet
Actions Associated with Grafcet Steps

Introduction A TwidoSoft Grafcet program offers two ways to program the actions associated
with steps:

In the post-processing section
Within List instructions or Ladder rungs of the steps themselves

Associating
Actions in Post-
Processing

If there are security or running mode constraints, it is preferable to program actions
in the post-processing section of a Grafcet application. You can use Set and Reset
List instructions or energize coils in a Ladder program to activate Grafcet steps
(%Xi).
Example:

Associating
Actions from an
Application

You can program the actions associated with steps within List instructions or Ladder
rungs. In this case, the List instruction or Ladder rung is not scanned unless the step
is active. This is the most efficient, readable, and maintainable way to use Grafcet.
Example:

018 =*= POST
019 LD %X1
020 ST %Q0.1
021 LD %X2
022 ST %Q0.2
023 LD %X3
024 ST %Q0.3

%X1

%X2

%Q0.3

%Q0.2

%Q0.1

%X2

-*- 4

#

R

S

-*- 3
%Q0.5

%Q0.5

4

020
021
022
023
024
025
026
027
028
029

-*-
LD
S
LD
#
-*-
LD
R
...
...

3
1
%Q0.5
%M10
4
4
1
%Q0.5
TWD USE 10AE 293

Grafcet
294 TWD USE 10AE

TWD USE 10AE
IV

Description of Instructions and
Functions
At a Glance

Subject of this
Part

This part provides detailed descriptions about basic and advanced instructions and
system bits and words for Twido languages.

What's in this
Part?

This part contains the following chapters:

Chapter Chapter Name Page

14 Basic Instructions 297

15 Advanced Instructions 367

16 System Bits and System Words 509
295

Instructions and Functions
296 TWD USE 10AE

TWD USE 10AE
14

Basic Instructions
At a Glance

Subject of this
Chapter

This chapter provides details about instructions and function blocks that are used to
create basic control programs for Twido controllers.

What's in this
Chapter?

This chapter contains the following sections:

Section Topic Page

14.1 Boolean Processing 299

14.2 Basic Function Blocks 316

14.3 Numerical Processing 340

14.4 Program Instructions 359
297

Basic Instructions
298 TWD USE 10AE

Basic Instructions
14.1 Boolean Processing

At a Glance

Aim of this
Section

This section provides an introduction to Boolean processing including descriptions
and programming guidelines for Boolean instructions.

What's in this
Section?

This section contains the following topics:

Topic Page

Boolean Instructions 300

Understanding the Format for Describing Boolean Instructions 302

Load Instructions (LD, LDN, LDR, LDF) 304

Assignment instructions (ST, STN, R, S) 306

Logical AND Instructions (AND, ANDN, ANDR, ANDF) 308

Logical OR Instructions (OR, ORN, ORR, ORF) 310

Exclusive OR, instructions (XOR, XORN, XORR, XORF) 312

NOT Instruction (N) 314
TWD USE 10AE 299

Basic Instructions
Boolean Instructions

Introduction Boolean instructions can be compared to Ladder language elements. These
instructions are summarized in the following table.

The Boolean result of the test elements is applied to the action elements as shown
by the following instructions.

Testing
Controller Inputs

Boolean test instructions can be used to detect rising or falling edges on the
controller inputs. An edge is detected when the state of an input has changed
between "scan n-1" and the current "scan n". This edge remains detected during the
current scan.

Rising Edge
Detection

The LDR instruction (Load Rising Edge) is equivalent to a rising edge detection
contact. The rising edge detects a change of the input value from 0 to 1.
A positive transition sensing contact is used to detect a rising edge as seen in the
following diagram.

Item Instruction Example Description

Test elements The Load (LD)
instruction is equivalent
to an open contact.

LD %I0.0 Contact is closed when bit
%I0.0 is at state 1.

Action elements The Store (ST)
instruction is equivalent
to a coil.

ST %Q0.0 The associated bit object
takes a logical value of the bit
accumulator (result of
previous logic).

LD %I0.0
AND %I0.1
ST %Q0.0

LDR %I0.0
%I0.0

P: Positive transition sensing contactP
300 TWD USE 10AE

Basic Instructions
Falling Edge
Detection

The LDF instruction (Load Falling Edge) is equivalent to a falling edge detection
contact. The falling edge detects a change of the controlling input from 1 to 0.
A negative transition sensing contact is used to detect a falling edge as seen in the
following diagram.

Edge Detection The following table summarizes the instructions and timing for detecting edges:

%I0.0
N: Negative transition sensing contactLDF %I0.0 N

Edge Test
Instruction

Ladder
diagram

Timing diagram

Rising edge LDR %I0.0

Falling edge LDF %I0.0

Note: It is now possible to apply edge instructions to the %Mi internal bits.

P

%I0.0
Rising edge

time

time

T=1 controller
scan

Boolean
result

%I0.2
T

N

%I0.0
time

time

Boolean
result

%I0.2

Falling edge

T=1 controller
scan

T

TWD USE 10AE 301

Basic Instructions
Understanding the Format for Describing Boolean Instructions

Introduction Each Boolean instruction in this section is described using the following information:
Brief description
Example of the instruction and the corresponding ladder diagram
List of permitted operands
Timing diagram

The following explanations provide more detail on how Boolean instructions are
described in this section.

Examples The following illustration shows how examples are given for each instruction.

Permitted
Operands

The following table defines the types of permitted operands used for Boolean
instructions.

Ladder diagram equivalents List instructions

LD %I0.1
ST %Q0.3
LDN %M0
ST %Q0.2
LDR %I0.1
ST %Q0.4
LDF %I0.3
ST %Q0.5

P

N

%I0.1

%M0

%I0.1

%I0.3

%Q0.3

%Q0.2

%Q0.4

%Q0.5

Operand Description

0/1 Immediate value of 0 or 1

%I Controller input %Ii.j

%Q Controller output %Qi.j

%M Internal bit %Mi

%S System bit %Si

%X Step bit %Xi

%BLK.x Function block bit (for example, %TMi.Q)

%•:Xk Word bit (for example, %MWi:Xk)

[Comparison expression (for example, [%MWi<1000])
302 TWD USE 10AE

Basic Instructions
Timing Diagrams The following illustration shows how timing diagrams are displayed for each
instruction.

Timing diagram for the
LD instruction

Input state

Output state

%M0 %I0.3%I0.1 %I0.2

LD LDN LDR LDF

%Q0.2 %Q0.5%Q0.3 %Q0.4

Timing diagrams for the four types of
Load instructions are grouped together.

%I0.1

LD

%Q0.3
TWD USE 10AE 303

Basic Instructions
Load Instructions (LD, LDN, LDR, LDF)

Introduction Load instructions LD, LDN, LDR, and LDF correspond respectively to the opened,
closed, rising edge, and falling edge contacts (LDR and LDF are used only with
controller inputs and internal words, and for AS-Interface slave inputs).

Examples The following diagrams are examples of Load instructions.

Permitted
Operands

The following table lists the types of load instructions with Ladder equivalents and
permitted operands.

N

LD %I0.1
ST %Q0.3
LDN %M0
ST %Q0.2
LDR %I0.2
ST %Q0.4
LDF %I0.3
ST %Q0.5

P

%Q0.3

%Q0.2

%Q0.4

%Q0.5

%I0.1

%M0

%I0.2

%I0.3

List Instruction Ladder Equivalent Permitted Operands

LD 0/1, %I, %IA, %Q, %QA, %M, %S, %X,
%BLK.x, %•:Xk,[

LDN 0/1, %I, %IA, %Q, %QA, %M, %S, %X,
%BLK.x, %•:Xk,[

LDR %I, %IA, %M

LDF %I, %IA, %M

P

N

304 TWD USE 10AE

Basic Instructions
Timing diagram The following diagram displays the timing for Load instructions.

%M0 %I0.3%I0.1 %I0.2

LD LDN LDR LDF

%Q0.2 %Q0.5%Q0.3 %Q0.4
TWD USE 10AE 305

Basic Instructions
Assignment instructions (ST, STN, R, S)

Introduction The assignment instructions ST, STN, S, and R correspond respectively to the
direct, inverse, set, and reset coils.

Examples The following diagrams are examples of assignment instructions.

Permitted
Operands

The following table lists the types of assignment instructions with ladder equivalents
and permitted operands.

LD %I0.1
ST %Q0.3

STN %Q0.2
S %Q0.4

LD %I0.2
R %Q0.4

%Q0.3

%Q0.2

%Q0.4

%Q0.4%I0.2

%I0.1

R

S

/

List Instruction Ladder Equivalent Permitted Operands

ST %Q,%QA,%M,%S,%BLK.x,%•:Xk

STN %Q,%QA%M,%S,%BLK.x,%•:Xk

S %Q,%QA,%M,%S,%X,%BLK.x,%•:Xk

R %Q,%QA,%M,%S,%X,%BLK.x,%•:Xk

S

R

306 TWD USE 10AE

Basic Instructions
Timing diagram The following diagram displays the timing for assignment instructions.

%I0.1 %I0.2%I0.1 %I0.1

ST STN S R

%Q0.2 %Q0.4%Q0.3 %Q0.4
TWD USE 10AE 307

Basic Instructions
Logical AND Instructions (AND, ANDN, ANDR, ANDF)

Introduction The AND instructions perform a logical AND operation between the operand (or its
inverse, or its rising or falling edge) and the Boolean result of the preceding
instruction.

Examples The following diagrams are examples of logic AND instructions.

Permitted
Operands

The following table lists the types of AND instructions with ladder equivalents and
permitted operands.

LD %I0.1
AND %M1
ST %Q0.3
LD %M2
ANDN %I0.2
ST %Q0.2
LD %I0.3
ANDR %I0.4
S %Q0.4
LD %M3
ANDF %I0.5
S %Q0.5

%Q0.3

%Q0.2

%Q0.4

%Q0.5

S

S

%I0.1

%I0.2

%I0.4%I0.3

%I0.5%M3

%M2

%M1

N

P

List Instruction Ladder Equivalent Permitted Operands

AND 0/1, %I, %IA, %Q, %QA, %M, %S, %X,
%BLK.x, %•:Xk, [

ANDN 0/1, %I, %IA, %Q, %QA, %M, %S, %X,
%BLK.x, %•:Xk, [

ANDR %I, %IA, %M

ANDF %I, %IA, %M

P

N

308 TWD USE 10AE

Basic Instructions
Timing diagram The following diagram displays the timing for the AND instructions.

%M2 %M3%I0.1 %I0.3

AND ANDN ANDR ANDF

%I0.2 %I0.5%M1 %I0.4

%Q0.2%Q0.3 %Q0.4 %Q0.5
TWD USE 10AE 309

Basic Instructions
Logical OR Instructions (OR, ORN, ORR, ORF)

Introduction The OR instructions perform a logical OR operation between the operand (or its
inverse, or its rising or falling edge) and the Boolean result of the preceding
instruction.

Examples The following diagrams are examples of logic OR instructions.

LD %I0.1
OR %M1
ST %Q0.3

LD %M2
ORN %I0.2
ST %Q0.2

LD %M3
ORR %I0.4
S %Q0.4

LDF %I0.5
ORF %I0.6
S %Q0.5

%Q0.3

%Q0.2

%Q0.4

%Q0.5

S

S

%I0.1

%M1

%I0.2

%I0.4

%I0.5

%I0.6

%M2

%M3

P

N

N

310 TWD USE 10AE

Basic Instructions
Permitted
Operands

The following table lists the types of OR instructions with Ladder equivalents and
permitted operands.

Timing diagram The following diagram displays the timing for the OR instructions.

List Instruction Ladder Equivalent Permitted Operands

OR 0/1, %I,%IA, %Q, %QA, %M, %S, %X, %BLK.x,
%•:Xk

ORN 0/1, %I,%IA, %Q, %QA, %M, %S, %X, %BLK.x,
%•:Xk

ORR %I, %IA, %M

ORF %I, %IA, %M

P

N

%M2 %I0.5%I0.1 %M3

OR ORN ORR ORF

%I0.2 %I0.6%M1 %I0.4

%Q0.2%Q0.3 %Q0.4 %Q0.5
TWD USE 10AE 311

Basic Instructions
Exclusive OR, instructions (XOR, XORN, XORR, XORF)

Introduction The XOR instructions perform an exclusive OR operation between the operand (or
its inverse, or its rising or falling edge) and the Boolean result of the preceding
instruction.

Examples The following example shows the use of XOR instructions.

Permitted
Operands

The following table lists the types of XOR instructions and permitted operands.

LD %I0.1
XOR %M1
ST %Q0.3

LD %I0.1
ANDN %M1
OR(%M1
ANDN %I0.1
)
ST %Q0.3

%Q0.3%M1%I0.1

XOR

%Q0.3

%I0.1

%I0.1

%M1

%M1

Schematic NOT using XOR instruction :

Schematic using XOR instruction:

List instruction Permitted Operands

XOR %I, %IA, %Q, %QA, %M, %S, %X,
%BLK.x, %•:Xk

XORN %I, %IA, %Q, %QA, %M, %S, %X,
%BLK.x, %•:Xk

XORR %I, %IA, %M

XORF %I, %IA, %M
312 TWD USE 10AE

Basic Instructions
Timing Diagram The following diagram displays the timing for the XOR instructions.

Special Cases The following are special precautions for using XOR instructions in Ladder
programs:

Do not insert XOR contacts in the first position of a rung.
Do not insert XOR contacts in parallel with other ladder elements (see the
following example.)

As shown in the following example, inserting an element in parallel with the XOR
contact will generate a validation error.

%I0.1

XOR

%M1

%Q0.3

%Q1.10

%M10

XOR

%I1.5%M13
TWD USE 10AE 313

Basic Instructions
NOT Instruction (N)

Introduction The NOT (N) instruction negates the Boolean result of the preceding instruction.

Example The following is an example of using the NOT instruction.

Permitted
Operands

Not applicable.

Note: The NOT instruction is not reversible.

LD %I0.1
OR %M2
ST %Q0.2
N
AND %M3
ST %Q0.3
314 TWD USE 10AE

Basic Instructions
Timing Diagram The following diagram displays the timing for the NOT instruction.

%I0.1

NOT

%M2

%Q0.2

%M3

%Q0.3
TWD USE 10AE 315

Basic Instructions
14.2 Basic Function Blocks

At a Glance

Aim of this
Section

This section provides descriptions and programming guidelines for using basic
function blocks.

What's in this
Section?

This section contains the following topics:

Topic Page

Basic Function Blocks 317

Standard function blocks programming principles 319

Timer Function Block (%TMi) 321

TOF Type of Timer 323

TON Type of Timer 324

TP Type of Timer 325

Programming and Configuring Timers 326

Up/Down Counter Function Block (%Ci) 329

Programming and Configuring Counters 332

Shift Bit Register Function Block (%SBRi) 334

Step Counter Function Block (%SCi) 336
316 TWD USE 10AE

Basic Instructions
Basic Function Blocks

Introduction Function blocks are the sources for bit objects and specific words that are used by
programs. Basic function blocks provide simple functions such as timers or up/down
counting.

Example of a
Function Block

The following illustration is an example of an up/down Counter function block.

Bit Objects Bit objects correspond to the block outputs. These bits can be accessed by Boolean
test instructions using either of the following methods:

Directly (for example, LD E) if they are wired to the block in reversible
programming (see Standard function blocks programming principles, p. 319).
By specifying the block type (for example, LD %Ci.E).

Inputs can be accessed in the form of instructions.

Word Objects Word objects correspond to specified parameters and values as follows:
Block configuration parameters: Some parameters are accessible by the
program (for example, pre-selection parameters) and some are inaccessible by
the program (for example, time base).
Current values: For example, %Ci.V, the current count value.

Up/down counter block

R E

S D

CD F

CU

%Ci

ADJ Y
%Ci.P 9999
TWD USE 10AE 317

Basic Instructions
Accessible Bit
and Word
Objects

The following table describes the Basic function blocks bit and word objects that can
be accessed by the program.

Basic
Function
Block

Symbol Range
(i)

Types of
Objects

Description Address Write
Access

Timer %TMi 0 - 127 Word Current Value %TMi.V no

Preset value %TMi.P yes

Bit Timer output %TMi.Q no

Up/Down
Counter

%Ci 0 - 127 Word Current Value %Ci.V no

Preset value %Ci.P yes

Bit Underflow
output (empty)

%Ci.E no

Preset output
reached

%Ci.D no

Overflow output
(full)

%Ci.F no
318 TWD USE 10AE

Basic Instructions
Standard function blocks programming principles

Introduction Use one of the following methods to program standard function blocks:
Function block instructions (for example, BLK %TM2): This reversible method of
programming ladder language enables operations to be performed on the block
in a single place in the program.
Specific instructions (for example, CU %Ci): This non-reversible method enables
operations to be performed on the block’s inputs in several places in the program
(for example, line 100 CU %C1, line 174 CD %C1, line 209 LD %C1.D).

Reversible
Programming

Use instructions BLK, OUT_BLK, and END_BLK for reversible programming:
BLK: Indicates the beginning of the block.
OUT_BLK: Is used to directly wire the block outputs.
END_BLK: Indicates the end of the block.

Example with
Output Wiring

The following example shows reversible programming of a counter function block
with wired outputs.

BLK %C8
LDF %I1.1
R
LD %I1.2
AND %M0
CU
OUT_BLK
LD D
AND %M1
ST %Q0.4
END_BLK

N

Input
Processing

Output
Processing

R

S

CU

CD

E

D

F

%C8

ADJ Y
%Ci.P 9999

%I1.1

%I1.2 %M0

%M1 %Q0.4
TWD USE 10AE 319

Basic Instructions
Example without
Output Wiring

This example shows reversible programming of a counter function block without
wired outputs.

Note: Only test and input instructions on the relevant block can be placed between
the BLK and OUT_BLK instructions (or between BLK and END_BLK when
OUT_BLK is not programmed).

BLK %C8
LDF %I1.1
R
LD %I1.2
AND %M0
CU
END_BLK
LD %C8.D
AND %M1
ST %Q0.4

N R

S

CU

CD

E

D

F

%C8

ADJ Y
%Ci.P 9999

%I1.1

%I1.2 %M0

%C8.D %M1 %Q0.4

Input
Processing

Output
Processing
320 TWD USE 10AE

Basic Instructions
Timer Function Block (%TMi)

Introduction There are three types of Timer function blocks:
TON (Timer On-Delay): this type of timer is used to control on-delay actions.
TOF (Timer Off-Delay): this type of timer is used to control off-delay actions.
TP (Timer - Pulse): this type of timer is used to create a pulse of a precise
duration.

The delays or pulse periods are programmable and may be modified using the
TwidoSoft.

Illustration The following is an illustration of the Timer function block.

TYPE TON
TB 1min
ADJ Y
%TMi.P 9999

Timer function block

QIN

%TMi
TWD USE 10AE 321

Basic Instructions
Parameters The Timer function block has the following parameters:

Parameter Label Value

Timer number %TMi 0 to 63: TWDLCAA10DRF and TWDLCAA16DRF
0 to 127 for all other controllers.

Type TON • Timer On-Delay (default)

TOF • Timer Off-Delay

TP • pulse (monostable)

Time base TB 1 min (default), 1 s, 100 ms, 10 ms, 1 ms

Current Value %TMi.V Word which increments from 0 to %TMi.P when the timer is
running. May be read and tested, but not written by the
program. %TMi.V can be modified using the Animation
Tables Editor.

Preset value %TMi.P 0 - 9999. Word which may be read, tested, and written by
the program. Default value is 9999. The period or delay
generated is %TMi.P x TB.

Animation Tables
Editor

Y/N Y: Yes, the preset %TMi.P value can be modified using the
Animation Tables Editor.
N: No, the preset %TMi.P value cannot be modified.

Enable (or
instruction) input

IN Starts the timer on rising edge (TON or TP types) or falling
edge (TOF type).

Timer output Q Associated bit %TMi.Q is set to 1 depending on the function
performed: TON, TOF, or TP

Note: The larger the preset value, the greater the timer accuracy.
322 TWD USE 10AE

Basic Instructions
TOF Type of Timer

Introduction Use the TOF (Timer Off-Delay) type of timer to control off-delay actions. This delay
is programmable using TwidoSoft.

Timing Diagram The following timing diagram illustrates the operation of the TOF type timer.

Operation The following table describes the operation of the TOF type timer.

IN

Q

%TMi.P

%TMi.V

(1)

(3)

(4)

(2)

(5)

(1)

Phase Description

1 The current value %TMi.V is set to 0 on a rising edge at input IN, even if the timer
is running.

2 The %TMi.Q output bit is set to 1 when a rising edge is detected at input N.

3 The timer starts on the falling edge of input IN.

4 The current value %TMi.V increases to %TMi.P in increments of one unit for
each pulse of the time base TB.

5 The %TMi.Q output bit is reset to 0 when the current value reaches %TMi.P.
TWD USE 10AE 323

Basic Instructions
TON Type of Timer

Introduction The TON (Timer On-Delay) type of timer is used to control on-delay actions. This
delay is programmable using the TwidoSoft.

Timing Diagram The following timing diagram illustrates the operation of the TON type timer.

Operation The following table describes the operation of the TON type timer.

IN

Q

%TMi.P

%TMi.V

(1)

(3)

(4)

(2)

(5)

Phase Description

1 The timer starts on the rising edge of the IN input.

2 The current value %TMi.V increases from 0 to %TMi.P in increments of one unit
for each pulse of the time base TB.

3 The %TMi.Q output bit is set to 1 when the current value has reached %TMi.P.

4 The %TMi.Q output bit remains at 1 while the IN input is at 1.

5 When a falling edge is detected at the IN input, the timer is stopped, even if the
timer has not reached %TMi.P, and %TMi.V is set to 0.
324 TWD USE 10AE

Basic Instructions
TP Type of Timer

Introduction The TP (Timer - Pulse) type of timer is used to create pulses of a precise duration.
This delay is programmable using the TwidoSoft.

Timing Diagram The following timing diagram illustrates the operation of the TP type timer.

Operation The following table describes the operation of the TP type timer.

IN

Q

%TMi.P

%TMi.V

(1)

(3)

(4)

(5)

(2) (6)

Phase Description

1 The timer starts on the rising edge of the IN input. The current value %TMi.V is
set to 0 if the timer has not already started.

2 The %TMi.Q output bit is set to 1 when the timer starts.

3 The current value %TMi.V of the timer increases from 0 to %TMi.P in increments
of one unit per pulse of the time base TB.

4 The %TMi.Q output bit is set to 0 when the current value has reached %TMi.P.

5 The current value %TMi.V is set to 0 when %TMi.V equals %TMi.P and input IN
returns to 0.

6 This timer cannot be reset. Once %TMi.V equals %TMi.P, and input IN is 0, then
%TMi.V is set to 0.
TWD USE 10AE 325

Basic Instructions
Programming and Configuring Timers

Introduction Timer function blocks (%TMi) are programmed in the same way regardless of how
they are to be used. The timer function (TON, TOF, or TP) is selected during
configuration.

Examples The following illustration is a timer function block with examples of reversible and
non-reversible programming.

Configuration The following parameters must be entered during configuration:
Timer type: TON, TOF, or TP
Timebase: 1 min, 1 s, 100 ms, 10 ms or 1 ms
Preset value (%TMi.P): 0 to 9999
Adjust: Checked or Not Checked

BLK %TM1
LD %I0.1
IN
OUT_BLK
LD Q
ST %Q0.3
END_BLK

LD %I0.1
IN %TM1
LD %TM1.Q
ST %Q0.3

Reversible programming Non-Reversible programming

TYPE TON
TB 1min
ADJ Y
%TMi.P 9999

%I0.1 %Q0.3%TMi

IN Q
326 TWD USE 10AE

Basic Instructions
Special Cases The following table contains a list of special cases for programming the Timer
function block.

Timers with a 1
ms Time Base

The 1 ms time base is only available with the first five timers. The four system words
%SW76, %SW77, %SW78, and SW79, can be used as "hourglasses." These four
words are decremented individually by the system every millisecond if they have a
positive value.
Multiple timing can be achieved by successive loading of one of these words or by
testing the intermediate values. If the value of one of these four words is less than
0, it will not be modified. A timer can be "frozen" by setting the corresponding bit 15
to 1, and then "unfrozen" by resetting it to 0.

Special case Description

Effect of a cold restart (%S0=1) Forces the current value to 0. Sets output %TMi.Q
to 0. The preset value is reset to the value defined
during configuration.

Effect of a warm restart (%S1=1) Has no effect on the current and preset values of
the timer. The current value does not change
during a power outage.

Effect of a controller stop Stopping the controller does not freeze the current
value.

Effect of a program jump Jumping over the timer block does not freeze the
timer. The timer will continue to increment until it
reaches the preset value (%TMi.P). At that point,
the Done bit (%TMi.Q) assigned to output Q of the
timer block changes state. However, the
associated output wired directly to the block
output is not activated and not scanned by the
controller.

Testing by bit %TMi.Q (done bit) It is advisable to test bit %TMi.Q only once in the
program.

Effect of modifying the preset %TMi.P Modifying the present value by using an
instruction or by adjusting the value only takes
effect on the next activation of the timer.
TWD USE 10AE 327

Basic Instructions
Programming
Example

The following is an example of programming a timer function block.

LDR %I0.1 (Launching the timer on the rising edge of %I0.1)
[%SW76:=XXXX] (XXXX = required value)
LD %I0.2 (optional management of freeze, input I0.2 freezes)
ST %SW76:X15
LD [%SW76=0] (timer end test)
ST %M0
..............

%I0.1
%SW76:=XXXX

%I0.2

%SW76=0
%M0

%SW76:X15

P

328 TWD USE 10AE

Basic Instructions
Up/Down Counter Function Block (%Ci)

Introduction The Counter function block (%Ci) provides up and down counting of events. These
two operations can be done simultaneously.

Illustration The following is an illustration of the up/down Counter function block.

Parameters The Counter function block has the following parameters:

ADJ Y
%Ci.P 9999

Up/down counter function block

R E

S D

CD F

CU

%Ci

Parameter Label Value

Counter number %Ci 0 to 127

Current Value %Ci.V Word is incremented or decremented according to
inputs (or instructions) CU and CD. Can be read and
tested but not written by the program. Use the Data
Editor to modify %Ci.V.

Preset value %Ci.P 0 ≤ %Ci.P ≤ 9999. Word can be read, tested, and
written (default value: 9999).

Edit using the
Animation Tables
Editor

ADJ Y: Yes, the preset value can be modified by using
the Animation Tables Editor.
N: No, the preset value cannot be modified by using
the Animation Tables Editor.

Reset input (or
instruction)

R At state 1: %Ci.V = 0.

Reset input (or
instruction)

S At state 1: %Ci.V = %Ci.P.

Upcount input (or
instruction)

CU Increments %Ci.V on a rising edge.
TWD USE 10AE 329

Basic Instructions
Operation The following table describes the main stages of up/down counter operation.

Downcount input (or
instruction)

CD Decrements %Ci.V on a rising edge.

Downcount overflow
output

E (Empty) The associated bit %Ci.E=1, when down counter
%Ci.V changes from 0 to 9999 (set to 1 when %Ci.V
reaches 9999, and reset to 0 if the counter continues to
count down).

Preset output reached D (Done) The associated bit %Ci.D=1, when %Ci.V=%Ci.P.

Upcount overflow
output

F (Full) The associated bit %Ci.F=1, when %Ci.V changes
from 9999 to 0 (set to 1 when %Ci.V reaches 0, and
reset to 0 if the counter continues to count up).

Parameter Label Value

Operation Action Result

Counting A rising edge appears at the
upcounting input CU (or
instruction CU is activated).

The %Ci.V current value is
incremented by one unit.

The %Ci.V current value is equal
to the %Ci.P preset value.

The "preset reached" output bit %Ci.D
switches to 1.

The %Ci.V current value
changes from 9999 to 0.

The output bit %Ci.F (upcounting
overflow) switches to 1.

If the counter continues to count
up.

The output bit %Ci.F (upcounting
overflow) is reset to zero.

Downcount A rising edge appears at the
downcounting input CD (or
instruction CD is activated).

The current value %Ci.V is
decremented by one unit.

The current value %Ci.V
changes from 0 to 9999.

The output bit %Ci.E (downcounting
overflow) switches to 1.

If the counter continues to count
down.

The output bit %Ci.F (downcounting
overflow) is reset to zero.

Up/down count To use both the upcount and downcount functions simultaneously (or to
activate both instructions CD and CU), the two corresponding inputs CU
and CD must be controlled simultaneously. These two inputs are then
scanned in succession. If they are both at 1, the current value remains
unchanged.
330 TWD USE 10AE

Basic Instructions
Special Cases The following table shows a list of special operating/configuration cases for
counters.

Reset Input R is set to state 1(or the R
instruction is activated).

The current value %Ci.V is forced to 0.
Outputs %Ci.E, %Ci.D and %Ci.F are
at 0. The reset input has priority.

Preset If input S is set to 1 (or the S
instruction is activated) and the
reset input is at 0 (or the R
instruction is inactive).

The current value %Ci.V takes the
%Ci.P value and the %Ci.D output is
set to 1.

Operation Action Result

Special case Description

Effect of a cold restart (%S0=1) The current value %Ci.V is set to 0.
Output bits %Ci.E, %Ci.D, and %Ci.F are set to
0.
The preset value is initialized with the value
defined during configuration.

Effect of a warm restart (%S1=1) of a
controller stop

Has no effect on the current value of the counter
(%Ci.V).

Effect of modifying the preset %Ci.P Modifying the preset value via an instruction or by
adjusting it takes effect when the block is
processed by the application (activation of one of
the inputs).
TWD USE 10AE 331

Basic Instructions
Programming and Configuring Counters

Introduction The following example is a counter that provides a count of up to 5000 items. Each
pulse on input %I1.2 (when internal bit %M0 is set to 1) increments the counter %C8
up to its final preset value (bit %C8.D=1). The counter is reset by input %I1.1.

Programming
Example

The following illustration is a counter function block with examples of reversible and
non-reversible programming.

BLK %C8
LD %I1.1
R
LD %I1.2
AND %M0
CU
END_BLK
LD %C8.D
ST %Q0.0

R

S

CU

CD

E

D

F

%C8

ADJ Y
%Ci.P 9999

%I1.1

%I1.2 %M0

%C8.D %Q0.0

Reversible Programming Non-Reversible programming

Ladder diagram

LD %I1.1
R %C8
LD %I1.2
AND %M0
CU %C8
LD %C8.D
ST %Q0.0
332 TWD USE 10AE

Basic Instructions
Configuration The following parameters must be entered during configuration:
Preset value (%Ci.P): set to 5000 in this example
Adjust: Yes

Example of an
Up/Down
Counter

The following illustration is an example of an Up/Down Counter function block.

In this example, if we take %C1.P 4, the current value of the %C1.V counter will be
incremented from 0 to 3, then decremented from 3 to 0. Whereas %I0.0=1 %C1.V
oscillates between 0 and 3.

R

S

CU

CD

E

D

F

%C1

%I0.0

%M0 %I0.0

Ladder diagram

%M0 %M0

%M0

R

S

TWD USE 10AE 333

Basic Instructions
Shift Bit Register Function Block (%SBRi)

Introduction The Shift Bit Register function block (%SBRi) provides a left or right shift of binary
data bits (0 or 1).

Illustration The following is an example of a Shift Register function block.

Parameters The Shift Bit Register function block has the following parameters.

%SBRi
R

CU

CD

Parameter Label Value

Register number %SBRi 0 to 7

Register bit %SBRi.j Bits 0 to 15 (j = 0 to 15) of the shift register can be
tested by a Test instruction and written using an
Assignment instruction.

Reset input (or
instruction)

R When function parameter R is 1, this sets register
bits 0 to 15 %SBRi.j to 0.

Shift to left input (or
instruction)

CU On a rising edge, shifts a register bit to the left.

Shift to right input (or
instruction)

CD On a rising edge, shifts a register bit to the right.
334 TWD USE 10AE

Basic Instructions
Operation The following illustration shows a bit pattern before and after a shift operation.

This is also true of a request to shift a bit to the right (Bit 15 to Bit 0) using the CD
instruction. Bit 0 is lost.
If a 16-bit register is not adequate, it is possible to use the program to cascade
several registers.

Programming In the following example, a bit is shifted to the left every second while Bit 0 assumes
the opposite state to Bit 15.

Special Cases The following table contains a list of special cases for programming the Shift Bit
Register function block.

Bit 15 Bit 0

Bit 15 Bit 0

Operation
Initial state

CU %SBRi performs a
shift to the left

Bit 15 is lost

1 1 1 1 1 1 1

1 1 1 1 10

0 0 0 0 0 0 0 0 0

000000000 1

LDN %SBR0.15
ST %SBR0.0
BLK %SBR0
LD %S6
CU
END_BLK

LDN %SBR0.15
ST %SBR0.0
LD %S6
CU %SBR0

Reversible
 programming

Non-Reversible
 programming

%SBR0.0%SBR0.15

/

%SBR0
R

CU

CD

%S6

Special Case Description

Effect of a cold restart (%S0=1) Sets all the bits of the register word to 0.

Effect of a warm restart (%S1=1) Has no effect on the bits of the register word.
TWD USE 10AE 335

Basic Instructions
Step Counter Function Block (%SCi)

Introduction A Step Counter function block (%SCi) provides a series of steps to which actions
can be assigned. Moving from one step to another depends on external or internal
events. Each time a step is active, the associated bit is set to 1. Only one step of a
step counter can be active at a time.

Illustration The following is an example of a Step Counter function block.

Parameters The step function block has the following parameters:

%SCi
R

CU

CD

Parameter Label Value

Step counter number %SCi 0 - 7

Step Counter bit %SCi.j Step counter bits 0 to 255 (j = 0 to 255) can be
tested by a Load logical operation and written by
an Assignment instruction.

Reset input (or
instruction)

R When function parameter R is 1, this resets the
step counter.

Increment input (or
instruction)

CU On a rising edge, increments the step counter by
one step.

Decrement input (or
instruction)

CD On a rising edge, decrements the step counter
by one step.
336 TWD USE 10AE

Basic Instructions
Timing Diagram The following timing diagram illustrates the operation of the step function block.

CU input

CD input

Active step
number 0 1 2 3 2 1 0
TWD USE 10AE 337

Basic Instructions
Programming The following is an example of a Step Counter function block.
Step Counter 0 is incremented by input %I0.2.
Step Counter 0 is reset to 0 by input %I0.3 or when it arrives at step 3.
Step 0 controls output %Q0.1, step 1 controls output %Q0.2, and step 2 controls
output %Q0.3.

The following illustration shows both reversible and non-reversible programming for
this example.

BLK %SC0
LD %SC0.3
OR %I0.3
R
LD %I0.2
CU
END_BLK
LD %SC0.0
ST %Q0.1
LD %SC0.1
ST %Q0.2
LD %SC0.2
ST %Q0.3

LD %SC0.3
OR %I0.3
R %SC0
LD %I0.2
CU %SC0
LD %SC0.0
ST %Q0.1
LD %SC0.1
ST %Q0.2
LD %SC0.2
ST %Q0.3

Reversible
 programming

Non-reversible
 programming

%SC0.3

%I0.3

%I0.2

%SC0

R

CU

CD

%Q0.1%SC0.0

%SC0.1

%SC0.2

%Q0.2

%Q0.3
338 TWD USE 10AE

Basic Instructions
Special case The following table contains a list of special cases for operating the Step Counter
function block.

Special case Description

Effect of a cold restart (%S0=1) Initializes the step counter.

Effect of a warm restart (%S1=1) Has no effect on the step counter.
TWD USE 10AE 339

Basic Instructions
14.3 Numerical Processing

At a Glance

Aim of this
Section

This section provides an introduction to Numerical Processing including descriptions
and programming guidelines.

What's in this
Section?

This section contains the following topics:

Topic Page

Introduction to Numerical Instructions 341

Assignment Instructions 342

Comparison Instructions 347

Arithmetic Instructions on Integers 349

Logic Instructions 352

Shift Instructions 354

Conversion Instructions 356

Single/double word conversion instructions 358
340 TWD USE 10AE

Basic Instructions
Introduction to Numerical Instructions

At a Glance Numerical instructions generally apply to 16-bit words (see Word Objects, p. 29) and
to 32-bit double words (See Floating point and double word objects, p. 32). They are
written between square brackets. If the result of the preceding logical operation was
true (Boolean accumulator = 1), the numerical instruction is executed. If the result of
the preceding logical operation was false (Boolean accumulator = 0), the numerical
instruction is not executed and the operand remains unchanged.
TWD USE 10AE 341

Basic Instructions
Assignment Instructions

Introduction Assignment instructions are used to load operand Op2 into operand Op1.

Assignment Syntax for Assignment instructions.

Assignment operations can be performed on:
Bit strings
Words
Double words
Floating word
Word tables
Double word tables
Floating word tables

Assignment of
Bit Strings

Operations can be performed on the following bit strings (see Structured Objects,
p. 45):

Bit string -> bit string (Example 1)
Bit string -> word (Example 2) or double word (indexed)
Word or double word (indexed) -> bit string (Example 3)
Immediate value -> bit string

Examples Examples of bit string assignments.

[Op1:=Op2] <=> Op2 -> Op1

LD 1
[%Q0:8:=%M64:8]

LD %I0.2
[%MW100:=%I0:16]

LDR %I0.3
[%M104:16:=%KW0]

(Ex. 1)

(Ex. 2)

(Ex. 3)

%Q0:8:=%M64:8

%MW100:=%I0:16

%M104:16:=%KW0

%I0.2

%I0.3

P

342 TWD USE 10AE

Basic Instructions
Usage rules:
For bit string -> word assignment: The bits in the string are transferred to the word
starting on the right (first bit in the string to bit 0 in the word), and the word bits
which are not involved in the transfer (length ≤16) are set to 0.
For word -> bit string assignment: The word bits are transferred from the right
(word bit 0 to the first bit in the string).

Bit String
Assignments

Syntax for bit string assignments.

Assignment of
Words

Assignment operations can be performed on the following words and double words:
Word (indexed) -> word (2, for example) (indexed or not)
Double word (indexed) -> double word (indexed or not)
Immediate whole value -> word (Example 3) or double word (indexed or not)
Bit string -> word or double word
Floating point (indexed or not)-> floating point (indexed or not)
Word or double word -> bit string
Immediate floating point value -> floating point (indexed or not)

Operator Syntax Operand 1 (Op1) Operand 2 (Op2)

:= [Op1: = Op2]

Operand 1 (Op1)
assumes the value of
operand 2 (Op2)

%MWi,%QWi,
%QWAi,%SWi
%MWi[%MWi], %MDi,
%MDi[%MWi]
%Mi:L, %Qi:L, %Si:L,
%Xi:L

Immediate value,
%MWi, %KWi,
%IW,%IWAi, %INWi,
%QWi, %QWAi
%QNWi, %SWi,
%BLK.x, %MWi[%MWi],
%KWi[%MWi],
%MDi[%MWi],
%KDi[%MWi],
%Mi:L,%Qi:L, %Si:L,
%Xi:L, %Ii:L

Note: The abbreviation %BLK.x (for example, %C0.P) is used to describe any
function block word.
TWD USE 10AE 343

Basic Instructions
Examples Examples of word assignments.

Syntax Syntax for word assignments.

The following table gives details operands:

LD 1
[%SW112:=%MW100]

LD %I0.2
[%MW0[%MW10]:=
%KW0[%MW20]]

LDR %I0.3
[%MW10:=100]

(Ex. 1)

(Ex. 2)

(Ex. 3)

%SW112:=%MW100

%MW0[%MW10]:=%KW0[%MW20]

%MW10:=100

%I0.3

%I0.2

P

Operator Syntax

:= [Op1: = Op2]
Operand 1 (Op1) assumes the value of operand 2 (Op2)

Type Operand 1 (Op1) Operand 2 (Op2)

word,
double
word, bit
string

%BLK.x, %MWi,
%QWi, %QWAi, %SWi
%MWi[MWi, %MDi,
%MDi[%MWj]],
%Mi:L, %Qi:L, %Si:L,
%Xi:L

Immediate value, %MWi,
%KWi, %IW, %IWAi,
%QWi, %QWAi, %SWi,
%MWi[MWi],
%KWi[MWi], %MDi,
%MDi[%MWj], %KDi,
%KDi[MWj] , %INW,
%Mi:L, %Qi:L, %QNW,
%Si:L, %Xi:L, %Ii:L

Floating
point

%MFi, %MFi[%MWj] Immediate floating point
value, %MFi,
%MFi[%MWj], %KFi,
%KFi[%MWj]

Note: The abbreviation %BLK.x (for example, R3.I) is used to describe any
function block word. For bit strings %Mi:L, %Si:L, and %Xi:L, the base address of
the first of the bit string must be a multiple of 8 (0, 8, 16, ..., 96, ...).
344 TWD USE 10AE

Basic Instructions
Assignment of
Word, Double
Word and
Floating Point
Tables

Assignment operations can be performed on the following object tables (see Tables
of words, p. 46):

Immediate whole value -> word table (Example 1) or double word table
Word -> word table (Example 2)
Word table -> word table (Example 3)
Table length (L) should be the same for both tables.
Double word -> double word table
Double word table -> double word table
Table length (L) should be the same for both tables.
Immediate floating point value -> floating point table
Floating point -> floating point table
Floating point table-> floating point table
Table length (L) should be the same for both tables.

Examples Examples of word table assignments:

LD 1
[%MW0:10:=100]

LD %I0.2
[%MW0:10:=%MW11]

LDR %I0.3
[%MW10:20:=%KW30:20]

(Ex. 1)

(Ex. 2)

(Ex. 3)

%MW0:10:=100

%MW0:10:=%MW11

%MW10:20:=%KW30:20

%I0.2

%I0.3

P

TWD USE 10AE 345

Basic Instructions
Syntax Syntax for word, double word and floating point table assignments

The following table gives details operands:

Operator Syntax

:= [Op1: = Op2]
Operand 1 (Op1) assumes the value of operand 2 (Op2)

Type Operand 1 (Op1) Operand 2 (Op2)

word table %MWi:L, %SWi:L %MWi:L, %SWi:L, Immediate whole
value, %MWi, %KWi, %IW, %QW,
%IWA, %QWA, %SWi, %BLK.x

Double word
tables

%MDi:L Immediate whole value, %MDi,
%KDi,%MDi:L, %KDi:L

Floating word
tables

%MFi:L] Immediate floating point value, %MFi,
%KFi, %MFi:L, %KFi:L

Note: The abbreviation %BLK.x (for example, R3.I) is used to describe any
function block word.
346 TWD USE 10AE

Basic Instructions
Comparison Instructions

Introduction Comparison instructions are used to compare two operands.
The following table lists the types of Comparison instructions.

Structure The comparison is executed inside square brackets following instructions LD, AND,
and OR. The result is 1 when the comparison requested is true.
Examples of Comparison instructions.

Instruction Function

> Test if operand 1 is greater than operand 2

>= Test if operand 1 is greater than or equal to operand 2

< Test if operand 1 is less than operand 2

<= Test if operand 1 is less than or equal to operand 2

= Test if operand 1 is equal than operand 2

<> Test if operand 1 is different from operand 2

LD [%MW10 > 100]
ST %Q0.3

LD %M0
AND [%MW20 < %KW35]
ST %Q0.2

LD %I0.2
OR [%MF30>=%MF40]
ST %Q0.4

%Q0.3

%Q0.2

%Q0.4

%M0

%I0.2

%MW10>100

%MW20<%KW35

%MF30>=%MF40
TWD USE 10AE 347

Basic Instructions
Syntax Syntax for Comparison instructions:

Operands:

An example of using Comparison instruction within parentheses:

Operator Syntax

>, >=, <, <=, =, <> LD [Op1 Operator Op2]
AND [Op1 Operator Op2]
OR [Op1 Operator Op2]

Type Operand 1 (Op1) Operand 2 (Op2)

Words %MWi, %KWi, %INWi,
%IW, %IWAi, %QNWi,
%QWi, %QWAi,
%QNWi, %SWi,
%BLK.x

Immediate value, %MWi,
%KWi, %INWi, %IW,
%IWAi, %QNWi, %QW,
%QWAi, %SWi, %BLK.x,
%MWi [%MWi], %KWi
[%MWi]

Double
words

%MDi, %KDi Immediate value, %MDi,
%KDi, %MDi [%MWi],
%KD [%MWi]

Floating
word

%MFi, %KFi Immediate floating point
value, %MFi, %KFi,
%MFi [%MWi], %KFi
[%MWi]

Note: Comparison instructions can be used within parentheses.

LD %M0
AND([%MF20 > 10.0]
OR %I0.0
)
ST %Q0.1
348 TWD USE 10AE

Basic Instructions
Arithmetic Instructions on Integers

Introduction Arithmetic instructions are used to perform arithmetic operations between two
integer operands or on one integer operand.
The following table lists the types of Arithmetic instructions.

Structure Arithmetic operations are performed as follows:

Instruction Function

+ Add two operands

- Subtract two operands

* Multiply two operands

/ Divide two operands

REM Remainder of division of the two operands

SQRT Square root of an operand

INC Increment an operand

DEC Decrement an operand

ABS Absolute value of an operand

LD %M0
[%MW0:=%MW10 + 100]

LD %I0.2
[%MW0:=SQRT(%MW10)]

LDR %I0.3
[INC %MW100]

%I0.3

P

%I0.2

%M0
%MW0:=%MW10+100

%MW0:=SQRT(%MW10)

INC %MW100
TWD USE 10AE 349

Basic Instructions
Syntax The syntax depends on the operators used as shown in the table below.

Operands:

Overflow and
Error Conditions

Addition
Overflow during word operation
If the result exceeds the capacity of the result word, bit %S18 (overflow) is set to
1 and the result is not significant (see Example 1, next page). The user program
manages bit %S18.

Note:
For double words, the limits are -2147483648 and 21474836487.
Multiplication

Overflow during operation
If the result exceeds the capacity of the result word, bit %S18 (overflow) is set to
1 and the result is not significant.

Operator Syntax

+,-,*,/,REM [Op1: = Op 2 Operator Op3]

INC, DEC [Operator Op1]

SQRT (1) [Op1: = SQRT(Op2)]

ABS (1) [Op1: = ABS(Op2)]

Type Operand 1 (Op1) Operands 2 and 3
(Op2 & 3) (1)

Words %MWi, %QWi,
%QWAi, %SWi

Immediate value,
%MWi, %KWi, %INW,
%IW, %IWAi, %QNW,
%QW, %QWAi,
%SWi, %BLK.x

Double words %MDi Immediate value,
%MDi, %KDi

Note: (1) With this operator, Op2 cannot be an immediate value.
The ABS function can only be used with double words (%MD and %KD) and
floating points (%MF and %KF). Consequently, OP1 and OP2 must be double
words or floating points.
350 TWD USE 10AE

Basic Instructions
Division / remainder
Division by 0
If the divider is 0, the division is impossible and system bit %S18 is set to 1. The
result is then incorrect.
Overflow during operation
If the division quotient exceeds the capacity of the result word, bit %S18 is set to
1.

Square root extraction
Overflow during operation
Square root extraction is only performed on positive values. Thus, the result is
always positive. If the square root operand is negative, system bit %S18 is set to
1 and the result is incorrect.

Examples Example 1: overflow during addition.

If %MW1 =23241 and %MW2=21853, the real result (45094) cannot be expressed
in one 16-bit word, bit %S18 is set to 1 and the result obtained (-20442) is incorrect.
In this example when the result is greater than 32767, its value is fixed at 32767.

Note: The user program is responsible for managing system bits %S17 and %S18.
These are set to 1 by the controller and must be reset by the program so that they
can be reused (see previous page for example).

LD %M0
[%MW0:=%MW1 + %MW2]

LDN %S18
[%MW10:=%MW0]

LD %S18
[%MW10:=32767]
R %S18

%M0

%S18

%S18

%MW0:=%MW1+%MW2

%MW10:=%MW0

%MW10:=32767

%S18
R

/

TWD USE 10AE 351

Basic Instructions
Logic Instructions

Introduction The Logic instructions are used to perform a logical operation between two word
operands or on one word operand.
The following table lists the types of Logic instructions.

Structure Logic operations are performed as follows:

Instruction Function

AND AND (bit-wise) between two operands

OR Logic OR (bit-wise) between two operands

XOR Exclusive OR (bit-wise) between two operands

NOT Logic complement (bit-wise) of an operand

LD %M0
[%MW0:=%MW10 AND 16#FF00]

LD 1
[%MW0:=%KW5 OR %MW10]

LD %I0.3
[%MW102:=NOT(%MW100)]

%M0

%I0.3

%MW0:=%MW10 AND 16#FF00

[%MW0:=%KW5 OR %MW10]

%MW102:=NOT (%MW100)
352 TWD USE 10AE

Basic Instructions
Syntax The syntax depends on the operators used:

Example The following is an example of a logical AND instruction:
[%MW15:=%MW32 AND %MW12]

Operator Syntax Operand 1 (Op1) Operands 2 and 3
(Op2 & 3)

AND, OR, XOR [Op1: = Op2 Operator Op3] %MWi, %QWi,
%QWAi, %SWi

Immediate value (1),
%MWi, %KWi, %IW,
%IWAi, %QW,
%QWAi, %SWi,
%BLK.x

NOT [Op1:=NOT(Op2)]

Note: (1) With NOT, Op2 cannot be an immediate value.
TWD USE 10AE 353

Basic Instructions
Shift Instructions

Introduction Shift instructions move bits of an operand a certain number of positions to the right
or to the left.
The following table lists the types of Shift instructions.

Instruction Function

Logic shift

SHL(op2,i) Logic shift of i positions to
the left.

SHR(op2,i) Logic shift of i positions to
the right.

Rotate shift

ROR(op2,i) Rotate shift of i positions
to the left.

ROL(op2,i) Rotate shift of i positions
to the right.

Note: System bit %S17 (See System Bits (%S), p. 510) is used for capacity
overrun.

F 0

%S17

F 0

%S17

F 0

F 0

%S17

%S17
354 TWD USE 10AE

Basic Instructions
Structure Shift operations are performed as follows:

Syntax The syntax depends on the operators used as shown in the table below.

Operands:

LDR %I0.1
[%MW0 :=SHL(%MW10, 5)]

LDR %I0.2
[%MW10 :=ROR(%KW9, 8)]

%I0.2

P

P %MW0:=SHL(%MW10, 5)

%MW10:=ROR(%KW9, 8)

%I0.1

Operator Syntax

SHL, SHR [Op1: = Operator (Op2,i)]

ROL, ROR

Types Operand 1 (Op1) Operand 2 (Op2)

Words %MWi, %QWi,
%QWAi, %SWi

%MWi, %KWi, %IW,
%IWAi, %QW,
%QWAi, %SWi,
%BLK.x

Double word %MDi %MDi, %KDi
TWD USE 10AE 355

Basic Instructions
Conversion Instructions

Introduction Conversion instructions perform conversion between different representations of
numbers.
The following table lists the types of Conversion instructions.

Review of BCD
Code

Binary Coded Decimal (BCD) represents a decimal digit (0 to 9) by coding four
binary bits. A 16-bit word object can thus contain a number expressed in four digits
(0000 - 9999), and a 32 bit double word object can therefore contain an eight-figure
number.
During conversion, system bit %S18 is set to 1 if the value is not BCD. This bit must
be tested and reset to 0 by the program.
BCD representation of decimal numbers:

Examples:
Word %MW5 expresses the BCD value "2450" which corresponds to the binary
value: 0010 0100 0101 0000
Word %MW12 expresses the decimal value "2450" which corresponds to the
binary value: 0000 1001 1001 0010

Word %MW5 is converted to word %MW12 by using instruction BTI.
Word %MW12 is converted to word %MW5 by using instruction ITB.

Structure Conversion operations are performed as follows:

Instruction Function

BTI BCD --> Binary conversion

ITB Binary --> BCD conversion

Decimal 0 1 2 3 4 5 6 7 8 9

BCD 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001

LD %M0
[%MW0 :=BTI(%MW10)]

LD %I0.2
[%MW10 :=ITB(%KW9)]

%I0.2

%M0

%MW0:=BTI(%MW10)

%MW10:=ITB(%KW9)
356 TWD USE 10AE

Basic Instructions
Syntax The syntax depends on the operators used as shown in the table below.

Operands:

Application
Example:

The BTI instruction is used to process a setpoint value at controller inputs via BCD
encoded thumb wheels.
The ITB instruction is used to display numerical values (for example, the result of a
calculation, the current value of a function block) on BCD coded displays.

Operator Syntax

BTI, ITB [Op1: = Operator (Op2)]

Type Operand 1 (Op1) Operand 2 (Op2)

Words %MWi, %QWi,
%QWAi, %SWi

%MWi, %KWi, %IW,
%IWAi, %QW,
%QWAi, %SWi,
%BLK.x

Double word %MDi %MDi, %KDi
TWD USE 10AE 357

Basic Instructions
Single/double word conversion instructions

Introduction The following table describes instructions used to perform conversions between
single and double words:

Structure Conversion operations are performed as follows:

Syntax The syntax depends on the operators used as shown in the following table: l

Instruction Function

LW LSB of double word extracted to a word.

HW MSB of double word extracted to a word.

CONCATW Concatenates two words into a double word.

DWORD Converts a 16 bit word into a 32 bit double word.

LD %M0
[%MW0 :=HW(%MD10)]

LD %I0.2
[%MD10 :=DWORD(%KW9)]

LD %I0.3
[%MD11:=CONCATW(%MW10,%MW5)]

%I0.2

%M0

%MW0:=HW(%MD10)

%MD10:=DWORD(%KW9)

%I0.3

%MD11:=CONCATW(%MW10, %MW5)

Operator Syntax Operand 1
(Op1)

Operand 2
(Op2)

Operand 3
(Op3)

LW, HW Op1 = Operator (Op2) %MWi %MDi, %KDi [-]

CONCATW Op1 = Operator (Op2, Op3)) %MDi %MWi,
%KWi,
immediate
value

%MWi,
%KWi,
immediate
value

DWORD Op1 = Operator (Op2) %MDi %MWi,
%KWi

[-]
358 TWD USE 10AE

Basic Instructions
14.4 Program Instructions

At a Glance

Aim of this
Section

This section provides an introduction to Program Instructions.

What's in this
Section?

This section contains the following topics:

Topic Page

END Instructions 360

NOP Instruction 362

Jump Instructions 363

Subroutine Instructions 364
TWD USE 10AE 359

Basic Instructions
END Instructions

Introduction The End instructions define the end of the execution of a program scan.

END, ENDC, and
ENDCN

Three different end instructions are available:
END: unconditional end of program
ENDC: end of program if Boolean result of preceding test instruction is 1
ENDCN: end of program if Boolean result of preceding test instruction is 0

By default (normal mode) when the end of program is activated, the outputs are
updated and the next scan is started.
If scanning is periodic, when the end of period is reached the outputs are updated
and the next scan is started.
360 TWD USE 10AE

Basic Instructions
Examples Example of an unconditional END instruction.

Example of a conditional END instruction.

LD %M1
ST %Q0.1
LD %M2
ST %Q0.2

...................

END

%M1

%M2

%Q0.1

%Q0.2

END

LD %M1
ST %Q0.1
LD %M2
ST %Q0.2

...................

LD %I0.2
ENDC
LD %M2
ST %Q0.2

...................

END

If %I0.2 = 1, end of
program scanning

If %I0.2 = 0, continues
program scanning
until new END instruc-
tion

%Q0.1%M1

%M2

%I0.2

%M2 %Q0.2

END

END

%Q0.2
TWD USE 10AE 361

Basic Instructions
NOP Instruction

NOP The NOP instruction does not perform any operation. Use it to "reserve" lines in a
program so that you can insert instructions later without modifying the line numbers.
362 TWD USE 10AE

Basic Instructions
Jump Instructions

Introduction Jump instructions cause the execution of a program to be interrupted immediately
and to be continued from the line after the program line containing label %Li (i = 1
to 16 for a compact and 1 to 63 for the others).

JMP, JMPC and
JMPCN

Three different Jump instructions are available:
JMP: unconditional program jump
JMPC: program jump if Boolean result of preceding logic is 1
JMPCN: program jump if Boolean result of preceding logic is 0

Examples Examples of jump instructions.

Guidelines Jump instructions are not permitted between parentheses, and must not be
placed between the instructions AND(, OR(and a close parenthesis instruction
")".
The label can only be placed before a LD, LDN, LDR, LDF or BLK instruction.
The label number of label %Li must be defined only once in a program.
The program jump is performed to a line of programming which is downstream or
upstream. When the jump is upstream, attention must be paid to the program
scan time. Extended scan time can cause triggering of the watchdog.

000 LD %M15
001 JMPC %L8
002 LD [%MW24>%MW12]
003 ST %M15
004 JMP %L12
005 %L8:
006 LD %M12
007 AND %M13
008 ST %M12
009 JMPCN %L12
010 OR %M11
011 S %Q0.0
012 %L12:
013 LD %I0.0

...............

Jump to label %L8 if %M15
is at 1

Unconditional jump to label
%L12:

Jump to label %L12 if
%M12 is at 0
TWD USE 10AE 363

Basic Instructions
Subroutine Instructions

Introduction The Subroutine instructions cause a program to perform a subroutine and then
return to the main program.

SRn, SRn: and
RET.

The subroutines consist of three steps:
The SRn instruction calls the subroutine referenced by label SRn, if the result of
the preceding Boolean instruction is 1.
The subroutine is referenced by a label SRn:, with n = 0 to 15 for
TWDLCAA10DRF, TWDLCAA16DRF and 0 to 63 for all other controllers.
The RET instruction placed at the end of the subroutine returns program flow to
the main program.

Example Examples of subroutine instructions.

000 LD %M15
001 AND %M5
002 ST %Q0.0
003 LD [%MW24>%MW12]
004 SR8
005 LD %I0.4
006 AND M13
007 _
008 _
009 _
010 END

011 SR8:
012 LD 1
013 IN %TM0
014 LD %TM0.Q
015 ST %M15
010 RET

.....................

Jump to subroutine SR8

Return to main subroutine
364 TWD USE 10AE

Basic Instructions
Guidelines A subroutine should not call up another subroutine.
Subroutine instructions are not permitted between parentheses, and must not be
placed between the instructions AND(, OR(and a close parenthesis instruction
")".
The label can only be placed before a LD or BLK instruction marking the start of
a Boolean equation (or rung).
Calling the subroutine should not be followed by an assignment instruction. This
is because the subroutine may change the content of the boolean accumulator.
Therefore upon return, it could have a different value than before the call. See the
following example.

Example of programming a subroutine.

LD %I0.0
SR0
ST %Q0.0

LD %I0.0
ST %Q0.0
SR0

%I0.0

>>%SR0

%Q0.0
TWD USE 10AE 365

Basic Instructions
366 TWD USE 10AE

TWD USE 10AE
15

Advanced Instructions
At a Glance

Subject of this
Chapter

This chapter provides details about instructions and function blocks that are used to
create advanced control programs for Twido programmable controllers.

What's in this
Chapter?

This chapter contains the following sections:

Section Topic Page

15.1 Advanced Function Blocks 369

15.2 Clock Functions 413

15.3 PID Function 424

15.4 Floating point instructions 480

15.5 Instructions on Object Tables 491
367

Advanced Instructions
368 TWD USE 10AE

Advanced Instructions
15.1 Advanced Function Blocks

At a Glance

Aim of this
Section

This section provides an introduction to advanced function blocks including
programming examples.

What's in this
Section?

This section contains the following topics:

Topic Page

Bit and Word Objects Associated with Advanced Function Blocks 370

Programming Principles for Advanced Function Blocks 372

LIFO/FIFO Register Function Block (%Ri) 374

LIFO Operation 376

FIFO,operation 377

Programming and Configuring Registers 378

Pulse Width Modulation Function Block (%PWM) 381

Pulse Generator Output Function Block (%PLS) 384

Drum Controller Function Block (%DR) 387

Drum Controller Function Block %DRi Operation 389

Programming and Configuring Drum Controllers 391

Fast Counter Function Block (%FC) 393

Very Fast Counter Function Block (%VFC) 396

Transmitting/Receiving Messages - the Exchange Instruction (EXCH) 408

Exchange Control Function Block (%MSGx) 409
TWD USE 10AE 369

Advanced Instructions
Bit and Word Objects Associated with Advanced Function Blocks

Introduction Advanced function blocks use similar types of dedicated words and bits as the
standard function blocks. Advanced function blocks include:

LIFO/FIFO registers (%R)
Drum controllers (%DR)
Fast counters (%FC)
Very fast counters (%VFC)
Pulse width modulation output (%PWM)
Pulse generator output (%PLS)
Shift Bit Register (%SBR)
Step counter (%SC)
Message control block (%MSG)

Objects
Accessible by
the Program

The table below contains an overview of the words and bits accessible by the
program that are associated with the various advanced function blocks. Please note
that write access in the table below depends on the "Adjustable" setting selected
during configuration. Setting this allows or denies access to the words or bits by
TwidoSoft or the operator interface.

Advanced
Function Block

Associated Words and Bits Address Write
Access

%R Word Register input %Ri.I Yes

Word Register output %Ri.O Yes

Bit Register output full %Ri.F No

Bit Register output empty %Ri.E No

%DR Word Current step number %DRi.S Yes

Bit Last step equals current step %DRi.F No

%FC Word Current Value %FCi.V Yes

Word Preset value %FCi.P Yes

Bit Done %FCi.D No
370 TWD USE 10AE

Advanced Instructions
%VFC Word Current Value %VFCi.V No

Word Preset value %VFCi.P Yes

Bit Counting direction %VFCi.U No

Word Capture Value %VFCi.C No

Word Threshold 0 Value %VFCi.S0 Yes

Word Threshold Value1 %VFCi.S1 Yes

Bit Overflow %VFCi.F No

Bit Reflex Output 0 Enable %VFCi.R Yes

Bit Reflex Output 1 Enable %VFCi.S Yes

Bit Threshold Output 0 %VFCi.TH0 No

Bit Threshold Output 1 %VFCi.TH1 No

Bit Frequency Measure Time Base %VFCi.T Yes

%PWM Word Percentage of pulse at 1 in
relationship to the total period.

%PWMi.R Yes

Word Preset period %PWMi.P Yes

%PLS Word Number of pulses %PLSi.N Yes

Word Preset value %PLSi.P Yes

Bit Current output enabled %PLSi.Q No

Bit Generation done %PLSi.D No

%SBR Bit Register Bit %SBRi.J No

%SC Bit Step counter Bit %SCi.j Yes

%MSG Bit Done %MSGi.D No

Bit Error %MSGi.E No

Advanced
Function Block

Associated Words and Bits Address Write
Access
TWD USE 10AE 371

Advanced Instructions
Programming Principles for Advanced Function Blocks

At a Glance All Twido applications are stored in the form of List programs, even if written in the
Ladder Editor, and therefore, Twido controllers can be called List "machines." The
term "reversibility" refers to the ability of TwidoSoft to represent a List application as
Ladder and then back again. By default, all Ladder programs are reversible.
As with basic function blocks, advanced function blocks must also take into
consideration reversibility rules. The structure of reversible function blocks in List
language requires the use of the following instructions:

BLK: Marks the block start and the input portion of the function block
OUT_BLK: Marks the beginning of the output portion of the function block
END_BLK: Marks the end of the function block

Dedicated Inputs
and Outputs

The Fast Counter, Very Fast Counter, PLS, and PWM advanced functions use
dedicated inputs and outputs, but these bits are not reserved for exclusive use by
any single block. Rather, the use of these dedicated resources must be managed.
When using these advanced functions, you must manage how the dedicated inputs
and outputs are allocated. TwidoSoft assists in configuring these resources by
displaying input/output configuration details and warning if a dedicated input or
output is already used by a configured function block.
The following tables summarizes the dependencies of dedicated inputs and outputs
and specific functions.
When used with counting functions:

Note: The use of these reversible function block instructions is not mandatory for
a properly functioning List program. For some instructions it is possible to program
in List language without being reversible.

Inputs Use

%I0.0.0 %VFC0: Up/Down management or Phase B

%I0.0.1 %VFC0: Pulse input or Phase A

%I0.0.2 %FC0: Pulse input or %VFC0 pre-set input

%I0.0.3 %FC1: Pulse input or %VFC0 capture input

%I0.0.4 %FC2: Pulse input or %VFC1 capture input

%I0.0.5 %VFC1 pre-set input

%I0.0.6 %VFC1: Up/Down management or Phase B

%I0.0.7 %VFC1: Pulse input or Phase A
372 TWD USE 10AE

Advanced Instructions
When used with counting or special functions:

Using Dedicated
Inputs and
Outputs

TwidoSoft enforces the following rules for using dedicated inputs and outputs.
Each function block that uses dedicated I/O must be configured and then
referenced in the application. The dedicated I/O is only allocated when a function
block is configured and not when it is referenced in a program.
After a function block is configured, its dedicated input and output cannot be used
by the application or by another function block.
For example, if you configure %PLS0, you can not use %Q0.0.0 in %DR0 (drum
controller) or in the application logic (that is, ST %Q0.0.0).
If a dedicated input or output is needed by a function block that is already in use
by the application or another function block, this function block cannot be
configured.
For example, if you configure %FC0 as an up counter, you can not configure
%VFC0 to use %I0.0.2 as capture input.

Outputs Use

%Q0.0.0 %PLS0 or PWM0 output

%Q0.0.1 %PLS1 or PWM1 output

%Q0.0.2 Reflex outputs for %VFC0

%Q0.0.3

%Q0.0.4 Reflex outputs for %VFC1

%Q0.0.5

Note: To change the use of dedicated I/O, unconfigure the function block by setting
the type of the object to "not used," and then remove references to the function
block in your application.
TWD USE 10AE 373

Advanced Instructions
LIFO/FIFO Register Function Block (%Ri)

Introduction A register is a memory block which can store up to 16 words of 16 bits each in two
different ways:

Queue (First In, First Out) known as FIFO.
Stack (Last In, First Out) know as LIFO.

Illustration The following is an illustration of the register function block.

Register function block

R E

I F

O

%Ri

TYPE FIFO
374 TWD USE 10AE

Advanced Instructions
Parameters The Counter function block has the following parameters:

Parameter Label Value

Register number %Ri 0 to 3.

Type FIFO or
LIFO

Queue or Stack.

Input word %Ri.I Register input word. Can be read, tested, and written.

Output word %Ri.O Register output word. Can be read, tested and written.

Storage Input (or
instruction)

I (In) On a rising edge, stores the contents of word %Ri.I in
the register.

Retrieval Input (or
instruction)

O (Out) On a rising edge, loads a data word of the register into
word %Ri.O.

Reset input (or
instruction)

R (Reset) At state 1, initializes the register.

Empty Output E (Empty) The associated bit %Ri.E indicates that the register is
empty. Can be tested.

Full Output F (Full) The associated bit %Ri.F indicates that the register is
full. Can be tested.
TWD USE 10AE 375

Advanced Instructions
LIFO Operation

Introduction In LIFO operation (Last In, First Out), the last data item entered is the first to be
retrieved.

Operation The following table describes LIFO operation.

Step Description Example

1 When a storage request is
received (rising edge at input I
or activation of instruction I), the
contents of input word %Ri.I
(which has already been
loaded) are stored at the top of
the stack (Fig. a). When the
stack is full (output F=1), no
further storage is possible.

2 When a retrieval request is
received (rising edge at input
O or activation of instruction O),
the highest data word (last word
to be entered) is loaded into
word %Ri.0 (Fig. b). When the
register is empty (output E=1)
no further retrieval is possible.
Output word %Ri.O does not
change and retains its value.

3 The stack can be reset at any
time (state 1 at input R or
activation of instruction R). The
element indicated by the pointer
is then the highest in the stack.

%Ri.I

50
80
20

20

(a)

Storage of the contents of %Ri.I
at the top of the stack.

20
(b)

50
80
20

50
80

%Ri.O

Retrieval of the data word high-
est in the stack.
376 TWD USE 10AE

Advanced Instructions
FIFO,operation

Introduction In FIFO operation (First In, First Out), the first data item entered is the first to be
retrieved.

Operation The following table describes FIFO operation.

Step Description Example

1 When a storage request is
received (rising edge at input I
or activation of instruction I),
the contents of input word
%Ri.I (which has already been
loaded) are stored at the top of
the queue (Fig. a). When the
queue is full (output F=1), no
further storage is possible.

2 When a retrieval request is
received (rising edge at input O
or activation of instruction O),
the data word lowest in the
queue is loaded into output
word %Ri.O and the contents
of the register are moved down
one place in the queue (Fig. b).
When the register is empty
(output E=1) no further retrieval
is possible. Output word %Ri.O
does not change and retains its
value.

3 The queue can be reset at any
time (state 1 at input R or
activation of instruction R).

%Ri.I

50
80
20

20

(a)

Storage of the contents of %Ri.I
at the top of the queue.

80
20

%Ri.O
50

20

(b)

Retrieval of the first data item
which is then loaded into %Ri.O.

50

80
TWD USE 10AE 377

Advanced Instructions
Programming and Configuring Registers

Introduction The following programming example shows the content of a memory word
(%MW34) being loaded into a register (%R2.I) on reception of a storage request
(%I0.2), if register %R2 is not full (%R2.F = 0). The storage request in the register
is made by %M1. The retrieval request is made by input %I0.3, and %R2.O is loaded
into %MW20, if the register is not empty (%R2.E = 0).
378 TWD USE 10AE

Advanced Instructions
Programming
Example

The following illustration is a register function block with examples of reversible and
non-reversible programming.

%R2R

I

O

E

F
TYPE FIFO

BLK %R2
LD %M1
I
LD %I0.3
O
END_BLK
LD %I0.3
ANDN %R2.E
[%MW20:=%R2.O]
LD %I0.2
ANDN %R2.F
[%R2.I:=%MW34]
ST %M1

LD %M1
I %R2
LD %I0.3
O %R2
ANDN %R2.E
[%MW20:=%R2.O]
LD %I0.2
ANDN %R2.F
[%R2.I:=%MW34]
ST %M1

Reversible program Non-reversible program

Ladder diagram

%M1

%R2.E

%R2.F

%I0.3

%M1

%I0.3

%I0.2

%MW20:=%R2.O

%R2.I:=%MW34
TWD USE 10AE 379

Advanced Instructions
Configuration The only parameter that must be entered during configuration is the type of register:
FIFO (default), or
LIFO

Special Cases The following table contains a list of special cases for programming the Shift Bit
Register function block:

Special case Description

Effect of a cold restart (%S0=1) Initializes the contents of the register. The output
bit %Ri.E associated with the output E is set to 1.

Effect of a warm restart (%S1=1) of a
controller stop

Has no effect on the current value of the register,
nor on the state of its output bits.
380 TWD USE 10AE

Advanced Instructions
Pulse Width Modulation Function Block (%PWM)

Introduction The Pulse Width Modulation (%PWM) function block generates a square wave
signal on dedicated output channels %Q0.0.0 or %Q0.0.1, with variable width and,
consequently, duty cycle. Controllers with relay outputs for these two channels do
not support this function due to a frequency limitation.
There are two %PWM blocks available. %PWM0 uses dedicated output %Q0.0.0
and %PMW1 uses dedicated output %Q0.0.1. The %PLS function blocks contend
to use these same dedicated outputs so you must choose between the two
functions.

Illustration PWM block and timing diagram:

IN

Tp
programmable width

configurable
fixed period

T

%PWM0

TB
%PWMi.P
TWD USE 10AE 381

Advanced Instructions
Parameters The following table lists parameters for the PWM function block.

Range of Periods The preset value and the time base can be modified during configuration. They are
used to fix the signal period T=%PWMi.P * TB. The lower the ratios to be obtained,
the greater the selected %PWMi.P must be. The range of periods available:

0.142 ms to 36.5 ms in steps of 0.142 ms (27.4Hz to 7kHz)
0.57 ms to 146 ms in steps of 0.57 ms (6./84 Hz to 1.75 kHz)
10 ms to 5.45 mins in steps of 10 ms
1 sec to 9.1 hours in steps of 1 sec

Operation The frequency of the output signal is set during configuration by selecting the time
base TB and the preset %PWMi.P. Modifying the % PWMi.R duty cycle in the
program modulates the width of the signal. Below is an illustration of a pulse diagram
for the PWM function block with varying duty cycles.

Parameter Label Description

Timebase TB 0.142 ms, 0.57 ms, 10 ms, 1 s (default value)

Preselection of
the period

%PWMi.P 0 < %PWMi.P <= 32767 with time base 10 ms or 1 s
0 < %PWMi.P <= 255 with time base 0.57 ms or 0.142 s
0 = Function not in use

Duty cycle %PWMi.R This value gives the percentage of the signal in state 1 in
a period. The width Tp is thus equal to:
Tp = T * (%PWMi.R/100). The user application writes the
value for %PWMi.R. It is this word which controls the duty
cycle of the period. For T definition, see "range of periods"
below.
The default value is 0 and values greater than 100 are
considered to be equal to 100.

Pulse
generation input

IN At state 1, the pulse width modulation signal is generated
at the output channel. At state 0, the output channel is set
to 0.

Ratio 20%

50%
80%

Dedicated Output

Input IN
382 TWD USE 10AE

Advanced Instructions
Programming
and
Configuration

In this example, the signal width is modified by the program according to the state
of controller inputs %I0.0.0 and %I0.0.1.
If %I0.0.1 and %I0.0.2 are set to 0, the %PWM0.R ratio is set at 20%, the duration
of the signal at state 1 is then: 20 % x 500 ms = 100 ms.
If %I0.0.0 is set to 0 and %I0.0.1 is set to 1, the %PWM0.R ratio is set at 50%
(duration 250 ms).
If %I0.0.0 and %I0.0.1 are set to 1, the %PWM0.R ratio is set at 80% (duration 400
ms).
Programming Example:

Special Cases The following table shows a list of special operating of the PWM function block.

LDN %I0.0
ANDN %I0.1
[%PWM0.R:=20]
LD %I0.0
ANDN %I0.1
[%PWM0.R:=50]
LD %I0.0
AND %I0.1
[%PWM0.R:=80]
BLK %PWM0
LD %I0.2
IN
END_BLK

 / /

 /

IN

%I0.0

%I0.0

%I0.0

%I0.1

%I0.1

%I0.1

%I0.2 %PWM0

%PWM0.R:=20

%PWM0.R:=50

%PWM0.R:=80

%PWMi0.P
TB

Special case Description

Effect of a cold restart (%S0=1) Sets the %PWMi.R ratio to 0. In addition, the value
for %PWMi.P is reset to the configured value, and
this will supersede any changes made with the
Animations Table Editor or the optional Operator
Display.

Effect of a warm restart (%S1=1) Has no effect.

Effect due to the fact that outputs are
dedicated to the %PWM block

Forcing output %Q0.0.0 or %Q0.0.1 using a
programming device does not stop the signal
generation.
TWD USE 10AE 383

Advanced Instructions
Pulse Generator Output Function Block (%PLS)

Introduction The %PLS function block is used to generate square wave signals. There are two
%PLS functions available on the dedicated output channels %Q0.0.0 or %Q0.0.1.
The %PLS function block allows only a single signal width, or duty cycle, of 50%.
You can choose to limit the number of pulses or the period when the pulse train is
executed. These can be determined at the time of configuration and/or updated by
the user application.

Representation An example of the pulse generator function block in single-word mode:

TON=T/2 for the 0.142ms and 0.57ms time bases
 = (%PLSi.P*TB)/2
TON=[whole part(%PLSi.P)/2]*TB for the 10ms to 1s time bases.

Note: Controllers with relay outputs for these two channels do not support %PLS
function.

IN Q

R

%PLS0

TB

%PLSi.P

D

ADJ Variable period
T

TON

SINGLE
384 TWD USE 10AE

Advanced Instructions
Specifications The table below contains the characteristics of the PLS function block:

Function Object Description

Timebase TB 0.142 ms, 0.57 ms, 10 ms, 1 sec

Preset
period

%PLSi.P Pulses on output %PLS1 are not stopped when %PLS1.N or
%PLS1.ND* is reached for time bases 0.142 ms and 0.57 ms.

1 < %PLSi.P <= 32767 for time base 10 ms or 1 s
0 < %PLSi.P <= 255 for time base 0.57 ms or 0.142 ms
0 = Function not in use.

To obtain a good level of precision from the duty cycle with time
bases of 10ms and 1s, you are recommended to have a %PLSi >=
100 if P is odd.

Number of
pulses

%PLSi.N
%PLSi.ND
*

The number of pulses to be generated in period T can be limited
to the range 0 <= %PLSi.N <= 32767 in standard mode or
0 <= %PLSi.ND <= 4294967295 in double word mode . The
default value is set to 0.
To produce an unlimited number of pulses, set %PLSi.N or
%PLSi.ND to zero. The number of pulses can always be changed
irrespective of the Adjustable setting.

Adjustable Y/N If set to Y, it is possible to modify the preset value %PLSi.P via the
HMI or Animation Tables Editor. Set to N means that there is no
access to the preset.

Pulse
generation
input

IN At state 1, the pulse generation is produced at the dedicated
output channel. At state 0, the output channel is set to 0.

Reset input R At state 1, outputs %PLSi.Q and %PLSi.D are set to 0.The
number of pulses generated in period T is set to 0.

Current
pulse
output
generation

%PLSi.Q At state 1, indicates that the pulse signal is generated at the
dedicated output channel configured.

Pulse
generation
done output

%PLSi.D At state 1, signal generation is complete. The number of desired
pulses has been reached.

Note:

Note: (*) Means a double word variable.
TWD USE 10AE 385

Advanced Instructions
Range of Periods The preset value and the time base can be modified during configuration. They are
used to fix the signal period T=%PLSi.P * TB. The range of periods available:

0.142 ms to 36.5 ms in steps of 0.142 ms (27.4Hz to 7kHz)
0.57 ms to 146 ms in steps of 0.57 ms (6.84 Hz to 1.75 kHz)
20 ms to 5.45 mins in steps of 10 ms
2 sec to 9.1 hours in steps of 1 sec

Operation The following is an illustration of the %PLS function block.

Special Cases

Input IN

Number of pulses

Dedicated Output

%PLSi.Q

%PLSi.D

Special case Description

Effect of cold restart (%S0=1) Sets the %PLSi.P to that defined during configuration

Effect of warm restart
(%S1=1)

Has no effect

Effect of modifying the preset
(%PLSi.P)

Takes effect immediately

Effect due to the fact that
outputs are dedicated to the
%PLS block

Forcing output %Q0.0.0 or %Q0.0.1 using a programming
device does not stop the signal generation.

Note: %PLSx.D is set when the number of desired pulses has been reached. It is
reset by either setting the IN or the R inputs to 1.
386 TWD USE 10AE

Advanced Instructions
Drum Controller Function Block (%DR)

Introduction The drum controller operates on a principle similar to an electromechanical drum
controller which changes step according to external events. On each step, the high
point of a cam gives a command which is executed by the controller. In the case of
a drum controller, these high points are symbolized by state 1 for each step and are
assigned to output bits %Qi.j or internal bits %Mi, known as control bits.

Illustration The following is an illustration of the drum controller function block.

%DRi

STEPS 8

Drum controller function block

R F

U

TWD USE 10AE 387

Advanced Instructions
Parameters The drum controller function block has the following parameters:

Parameter Label Value

Number %DRi 0 to 3 Compact Controller0 to 7 Modular Controllers

Current step number %DRi.S 0<%DRi.S<7. Word which can be read and written.
Written value must be a decimal immediate value.
When written, the effect takes place on the next
execution of the function block.

Number of steps 1 to 8 (default)

Input to return to step
0(or instruction)

R (Reset) At state 1, sets the drum controller to step 0.

Advance input (or
instruction)

U (Upper) On a rising edge, causes the drum controller to
advance by one step and updates the control bits.

Output F (Full) Indicates that the current step equals the last step
defined. The associated bit %DRi.F can be tested
(for example, %DRi.F=1, if %DRi.S= number of
steps configured - 1).

Control bits Outputs or internal bits associated with the step (16
control bits) and defined in the Configuration Editor.
388 TWD USE 10AE

Advanced Instructions
Drum Controller Function Block %DRi Operation

Introduction The drum controller consists of:
A matrix of constant data (the cams) organized in eight steps (0 to 7) and 16 data
bits (state of the step) arranged in columns numbered 0 to F.
A list of control bits is associated with a configured output (%Qi.j.k) or memory
word (%Mi). During the current step, the control bits take on the binary states
defined for this step.

The example in the following table summarizes the main characteristics of the drum
controller.

Operation In the above example, step 5 is the current step, control bits %Q0.1, %Q0.3, and
%Q1.5 are set to state 1; control bits %Q0.6, %Q0.5, and %Q1.0 are set to state 0.
The current step number is incremented on each rising edge at input U (or on
activation of instruction U). The current step can be modified by the program.

Timing Diagram The following diagram illustrates the operation of the drum controller.

Column 0 1 2 D O F

Control bits %Q0.1 %Q0.3 %Q1.5 %Q0.6 %Q0.5 %Q1.0

0 steps 0 0 1 1 1 0

1 steps 1 0 1 1 0 0

5 steps 1 1 1 0 0 0

6 steps 0 1 1 0 1 0

7 steps 1 1 1 1 0 0

20L-1 1

Input

Input

Step No.

Output

U:

R:

%DRi.S

%DRi.F

010 2 13
TWD USE 10AE 389

Advanced Instructions
Special Cases The following table contains a list of special cases for drum controller operation.

Special case Description

Effects of a cold restart
(%S0=1)

Resets the drum controller to step 0 (update of control bits).

Effect of a warm restart
(%S1=1)

Updates the control bits after the current step.

Effect of a program jump The fact that the drum controller is no longer scanned means the
control bits are not reset.

Updating the control bits Only occurs when there is a change of step or in the case of a
warm or cold restart.
390 TWD USE 10AE

Advanced Instructions
Programming and Configuring Drum Controllers

Introduction The following is an example of programming and configuring a drum controller. The
first six outputs %Q0.0 to %Q0.5 are activated in succession each time input %I0.1
is set to 1. Input I0.0 resets the outputs to 0.

Programming
Example

The following illustration is a drum controller function block with examples of
reversible and non-reversible programming.

BLK %DR1
LD %I0.0
R
LD %I0.1
U
OUT_BLK
LD F
ST %Q0.8
END_BLK

Ladder diagram

R F

U

%DR1

STEPS 6

%I0.0

%I0.1

%Q0.8
TWD USE 10AE 391

Advanced Instructions
Configuration The following information is defined during configuration:
Number of steps: 6
The output states (control bits) for each drum controller step.

Assignment of the control bits.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Step 1: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Step 2: 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Step 3: 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

Step 4: 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

Step 5: 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

Step 6: 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

1: %Q0.0 4: %Q0.1

2: %Q0.2 5: %Q0.3

3: %Q0.4 6: %Q0.5
392 TWD USE 10AE

Advanced Instructions
Fast Counter Function Block (%FC)

Introduction The Fast Counter function block (%FC) serves as either an up-counter or a down-
counter. It can count the rising edge of digital inputs up to frequencies of 5kHz in
single word or double word computational mode. Because the Fast Counters are
managed by specific hardware interrupts, maintaining maximum frequency
sampling rates may vary depending on your specific application and hardware
configuration.
The TWDLCA•40DRF Compact controllers can accomodate up to four fast
counters, while all other series of Compact controllers can be configured to use a
maximum of three fast counters. Modular controllers can only use a maximum of
two. The Fast Counter function blocks %FC0, %FC1, %FC2, and %FC3 use
dedicated inputs %I0.0.2, %I0.0.3, %I0.0.4 and %I0.0.5 respectively. These bits are
not reserved for their exclusive use. Their allocation must be considered with the use
of other function blocks for these dedicated resources.

Illustration The following is an example of a Fast Counter function block in single-word mode.

IN D

R

%FC0

TYPE UP

ADJ
%FC0.P

SINGLE
TWD USE 10AE 393

Advanced Instructions
Parameters The following table lists parameters for the Fast Counter function block.

Special Note If configured to be adjustable, then the application can change the preset value
%FCi.P or %FCi.PD and current value %FCi.V or %FCi.VD at any time. But, a new
value is taken into account only if the input reset is active or at the rising edge of
output %FCi.D. This allows for successive different counts without the loss of a
single pulse.

Parameter Label Description

Function TYPE Set at configuration, this can be set to either up-count or down-
count.

Preset value
%FCi.P
%FCi.PD

Initial value may be set:
->between 1 and 65635 in standard mode,
->between 1 and 4294967295 in double word mode,

Adjustable Y/N If set to Y, it is possible to modify the preset value %FCi.P or
%FCi.PD and the current value %FCi.V or %FCi.VD with the
Operator Display or Animation Tables Editor. If set to N, there is
no access to the preset.

Current Value %FCi.V
%FCi.VD

The current value increments or decrements according the up or
down counting function selected. For up-counting, the current
counting value is updated and can reach 65535 in standard
mode (%FCi.V) and 4294967295 in double word mode
(%FCi.VD). For down-counting, the current value is the preset
value %FCi.P or %FCi.PD and can count down to zero.

Enter to
enable

IN At state 1, the current value is updated according to the pulses
applied to the physical input. At state 0, the current value is held
at its last value.

Reset %FCi.R Used to initialize the block. At state 1, the current value is reset
to 0 if configured as an up-counter, or set to %FCi.P or %FCi.PD
if configured as a down-counter. The done bit %FCi.D is set
back to its default value.

Done %FCi.D This bit is set to 1 when %FCi.V or %FCi.VD reaches the %FCi.P
or %FCi.PD configured as an up-counter, or when %FCi.V or
%FCi.VD reaches zero when configured as a down-counter.
This read-only bit is reset only by the setting %FCi.R to 1.
394 TWD USE 10AE

Advanced Instructions
Operation If configured to up-count, when a rising edge appears at the dedicated input, the
current value is incremented by one. When the preset value %FCi.P or %FCi.PD is
reached, the Done output bit %FCi.D is set to 1 and zero is loaded into the current
value %FCi.V or %FCi.VD.
If configured to down-count, when a rising edge appears at the dedicated input, the
current value is decreased by one. When the value is zero, the Done output bit
%FCi.D is set to 1 and the preset value is loaded into the current value %FCi.V or
%FCi.VD.

Configuration
and
Programming

In this example, the application counts a number of items up to 5000 while %I1.1 is
set to 1. The input for %FC0 is the dedicated input %I0.0.2. When the preset value
is reached, %FC0.D is set to 1 and retains the same value until %FC0.R is
commanded by the result of "AND" on %I1.2 and %M0.

Special Cases The following table contains a list of special operating cases for the %FC function
block:

%I1.1

I1.2 %M0

%Q0.0
IN

R

D%FC0

TYPE UP

ADJY
%FC0.P 5000

BLK
LD
IN
LD
AND
R
OUT_BLK
LD D
ST %Q0.0
END_BLK

%FC0
%I1.1

%I1.2
%M0SINGLE

Special case Description

Effect of cold restart (%S0=1) Resets all the %FC attributes with the values
configured by the user or user application.

Effect of warm restart (%S1=1) Has no effect.

Effect of Controller stop The %FC continues to count with the parameter
settings enabled at the time the controller was stopped.
TWD USE 10AE 395

Advanced Instructions
Very Fast Counter Function Block (%VFC)

Introduction The Very Fast Counter function block (%VFC) can be configured by TwidoSoft to
perform any one of the following functions:

Up/down counter
Up/down 2-phase counter
Single Up Counter
Single Down Counter
Frequency Meter

The %VFC supports counting of digital input up to frequencies of 20kHz in single
word or double word computational mode. The TWDLCA•40DRF Compact
controllers can accomodate up to two very fast counters, while all other series of
Compact controllers can configure one very fast counter (%VFC). Modular
controllers can configure up to two very fast counters (%VFC).
396 TWD USE 10AE

Advanced Instructions
Dedicated I/O
Assignments

The Very Fast Counter function blocks (%VFC) use dedicated inputs and auxiliary
inputs and outputs. These inputs and outputs are not reserved for their exclusive
use. Their allocation must be considered with the use of other function blocks for
these dedicated resources. The following array summarizes these assignments:

Main inputs Auxiliary inputs Reflex outputs

%VFC0 Selected Use IA input IB input IPres Ica Output 0 Output 1

Up/down counter %I0.0.1 %I0.0.0
(UP=0/DO=1)

%I0.0.2 (1) %I0.0.3 (1) %Q0.0.2 (1) %Q0.0.3 (1)

Up/Down 2-Phase
Counter

%I0.0.1 %I0.0.0
(Pulse)

%I0.0.2 (1) %I0.0.3 (1) %Q0.0.2 (1) %Q0.0.3 (1)

Single Up Counter %I0.0.1 (2) %I0.0.2 (1) %I0.0.3 (1) %Q0.0.2 (1) %Q0.0.3 (1)

Single Down Counter %I0.0.1 (2) %I0.0.2 (1) %I0.0.3 (1) %Q0.0.2 (1) %Q0.0.3 (1)

Frequency Meter %I0.0.1 (2) (2) (2) (2) (2)

%VFC1 Selected Use IA input Input IB) IPres Ica Output 0 Output 1

Up/down counter %I0.0.7 %I0.0.6
(UP = 0/DO =
1)

%I0.0.5 (1) %I0.0.4 (1) %Q0.0.4 (1) %Q0.0.5 (1)

Up/Down 2-Phase
Counter

%I0.0.7 %I0.0.6
(Pulse)

%I0.0.5 (1) %I0.0.4 (1) %Q0.0.4 (1) %Q0.0.5 (1)

Single Up Counter %I0.0.7 (2) %I0.0.5 (1) %I0.0.4 (1) %Q0.0.4 (1) %Q0.0.5 (1)

Single Down Counter %I0.0.7 (2) %I0.0.5 (1) %I0.0.4 (1) %Q0.0.4 (1) %Q0.0.5 (1)

Frequency Meter %I0.0.7 (2) (2) (2) (2) (2)

Comments:

When not used, the input or output remains a normal digital I/O available to be managed by the
application in the main cycle.

If %I0.0.2 is used %FC0 is not available.
If %I0.0.3 is used %FC2 is not available.
If %I0.0.4 is used %FC3 is not available.

UP/DO = Up / Down counting

 (1) = optional
(2) = not used
 Ipres = preset input
Ica= Catch input

 Input IA = pulse input
Input IB = pulses or UP/DO
TWD USE 10AE 397

Advanced Instructions
Illustration Here is a block representation of the Very Fast Counter (%VFC) in single-word
mode:

Specifications The following table lists characteristics for the very fast counter (%VFC) function
block.

IN F

S TH1

TH0

%VFC0

TYPE UP/DN

T_OUT0
T_OUT1
ADJ
%VFC0.P

USINGLE

Function Description Values %VFC
Use

Run-time
Access

Current Value
(%VFCi.V)
(%VFCi.VD*)

Current value that is increased or decreased according
to the physical inputs and the function selected. This
value can be preset or reset using the preset input
(%VFCi.S).

%VFCi.V: 0 ->
65535
%VFCi.VD: 0 ->
4294967295

CM Read

Preset value
(%VFCi.P)
(%VFCi.PD*)

Only used by the up/down counting function and single
up or down counting.

%VFCi.P: 0 ->
65535
%VFCi.PD: 0 ->
4294967295

CM or FM Read and
Write (1)

Capture Value
(%VFCi.C)
(%VFCi.CD*)

Only used by the up/down counting function and single
up or down counting.

%VFCi.C: 0 ->
65535
%VFCi.CD: 0 ->
4294967295

CM Read

Counting
direction
(%VFCi.U)

Set by the system, this bit is used by the up/down
counting function to indicate to you the direction of
counting:
As a single phase up or down counter, %I0.0.0 decides
the direction for %VFC0 and %I0.0.6 for %VFC1.
For a two-phase up/down counter, it is the phase
difference between the two signals that determines the
direction.
 For %VFC0, %I0.0 is dedicated to IB and %I0.1 to IA.
For %VFC1, %I0.6 is dedicated to IB and %I0.7 to IA.

0 (Down
counting)
1 (Up counting)

CM Read
398 TWD USE 10AE

Advanced Instructions
Enable Reflex
Output 0
(%VFCi.R)

Validate Reflex Output 0 0 (Disable)
1 (Enable)

CM Read and
Write (2)

Enable Reflex
Output 1
(%VFCi.S)

Validate Reflex Output 1 0 (Disable)
1 (Enable)

CM Read and
Write (2)

Threshold
Value S0
(%VFCi.S0)
(%VFCi.S0D*)

This word contains the value of threshold 0. The
meaning is defined during configuration of the function
block. Note: This value must be less than %VFCi.S1.

%VFCi.S0: 0 ->
65535
%VFCi.S0D: 0 -
> 4294967295

CM Read and
Write (1)

Threshold
Value S1
(%VFCi.S1)
(%VFCi.S1D*)

This word contains the value of threshold 0. The
meaning is defined during configuration of the function
block. Note: This value must be greater than %VFCi.S0.

%VFCi.S1: 0 ->
65535
%VFCi.S1D: 0 -
> 4294967295

CM Read and
Write (1)

Frequency
Measure Time
Base
(%VFCi.T)

Configuration item for 100 or 1000 millisecond time base. 1000 or 100 FM Read and
Write (1)

Adjustable
(Y/N)

Configurable item that when selected, allows the user to
modify the preset, threshold, and frequency measure
time base values while running.

N (No)
Y (Yes)

CM or FM No

Enter to
enable
(IN)

Used to validate or inhibit the current function. 0 (No) CM or FM Read and
Write (3)

Preset input
(S)

Depending on the configuration, at state 1:
Up/Down or Down Counting: initializes the current
value with the preset value.
Single Up Counting: resets the current value to zero.

In addition, this also initializes the operation of the
threshold outputs and takes into account any user
modifications to the threshold values set by the Operator
Display or user program.

0 or 1 CM or FM Read and
Write

Overflow
output
(F)

0 to 65535 or from 65535 to 0 in standard mode
0 to 4294967295 or from 4294967295 to 0 in double
word mode

0 or 1 CM Read

Function Description Values %VFC
Use

Run-time
Access
TWD USE 10AE 399

Advanced Instructions
(*)Means a 32-bit double word variable. The double word option is available on all
controllers with the exception of the Twido TWDLC•A10DRF controllers.
(1) Writable only if Adjust is set to one.
(2) Access available only if configured.
(3) Read and write access only through the application. Not the Operator Display or
Animation Tables Editor.
CM = Counting Mode
FM = Frequency Meter Mode

Counting
Function
Description

The very fast counting function (%VFC) works at a maximum frequency of 20 kHz,
with a range of 0 to 65535 in standard mode and 0 to 4294967295. The pulses to
be counted are applied in the following way:
Table:

Threshold
Bit 0
(%VFCi.TH0)

Set to 1 when the current value is greater than or equal
to the threshold value %VFCi.S0. It is advisable to test
this bit only once in the program because it is updated in
real time. The user application is responsible for the
validity of the value at its time of use.

0 or 1 CM Read

Threshold
Bit 1
(%VFCi.TH1)

Set to 1 when the current value is greater than or equal
to the threshold value %VFCi.S1. It is advisable to test
this bit only once in the program because it is updated in
real time. The user application is responsible for the
validity of the value at its time of use.

0 or 1 CM Read

Function Description Values %VFC
Use

Run-time
Access

Function Description %VFC0 %VFC1

IA IB IA IB

Up/Down Counter The pulses are applied to the physical input, the
current operation (upcount/downcount) is given by
the state of the physical input IB.

%I0.0.1 %I0.0.0 %I0.0.7 %I0.0.6

Up/Down 2-Phase
Counter

The two phases of the encoder are applied to
physical inputs IA and IB.

%I0.0.1 %I0.0.0 %I0.0.7 %I0.0.6

Single Up Counter The pulses are applied to the physical input IA. IB is
not used.

%I0.0.1 ND %I0.0.7 ND

Single Down
Counter

The pulses are applied to the physical input IA. IB is
not used.

%I0.0.1 ND %I0.0.7 ND
400 TWD USE 10AE

Advanced Instructions
Notes on
Function Blocks

Upcount or downcount operations are made on the rising edge of pulses, and only
if the counting block is enabled.
There are two optional inputs used in counting mode: ICa and IPres. ICa is used to
capture the current value (%VFCi.V or %VFCi.VD) and stored it in %VFCi.C or
%VFCi.CD. The Ica inputs are specified as %I0.0.3 for %VFC0 and %I0.0.4 for
%VFC1 if available.
When IPres input is active, the current value is affected in the following ways:

For up counting, %VFCi.V or %VFCi.VD is reset to 0
For downcounting, %VFCi.V or %VFCi.VD is written with the content of %VFCi.P
or %VFCi.PD, respectively.
For frequency counting, %VFCi.V or %VFCi.PD is set to 0

Warning: %VFCi.F is also set to 0. The IPres inputs are specified as %I0.0.2 for
%VFC0 and %I0.0.5 for %VFC1 if available.

Notes on
Function Block
Outputs

For all functions, the current value is compared to two thresholds (%VFCi.S0 or
%VFCi.S0D and % VFCi.S1 or %VFCi.S1D). According to the result of this
comparison two bit objects (%VFCi.TH0 and %VFCi.TH1) are set to 1 if the current
value is greater or equal to the corresponding threshold, or reset to 0 in the opposite
case. Reflex outputs (if configured) are set to 1 in accordance with these
comparisons. Note: None, 1 or 2 outputs can be configured.
%VFC.U is an output of the FB, it gives the direction of the associated counter
variation (1 for UP, 0 for DOWN).
TWD USE 10AE 401

Advanced Instructions
Counting
Function
Diagram

The following is a counting function diagram in standard mode (in double word
mode, you will use the double word function variables, accordingly):

&

&

>1

>1

%VFC Counter

Current Value

Comparison

%VFCi.U

Direction of
counting

%VFCi.F
Overflow

output

%VFCi.V

Current
value

%VFCi.TH0

%VFCi.TH1

VFCi.C
Catch
value

%Q0.0.x
Reflex
output 0

%Q0.0.y
Reflex
output 1

&

&

+

-

IA = Up counter input
(Single signal or phase 1)

IN %VFCi

%VFCi.P

IB = (UP/DOWN flag or phase 2)

S %VFCi

%VFCi.S0
Threshold
Value 0

%VFCi.S1
Threshold
Value 1

%VFCi.R
 or

%VFCi.S
 Enable

IPres = (Preset Input)

%ICa = Catch input

Read %VFCi.V
instruction

Current Value

Note: Outputs are managed independently from the controller cycle time. The
response time is between 0 and 1ms.
402 TWD USE 10AE

Advanced Instructions
Single Up
Counter
Operation

The following is an example of using %VFC in a single up counter mode. The
following configuration elements have been set for this example:
%VFC0.P preset value is 17, while the %VFC0.S0 lower threshold value is 14, and
the %VFC0.S1 upper threshold is 20.

A timing chart follows:

Reflex
Output

<%VFC.S0 %VFC0.S0 <=< %VFC0.S1 >= %VFC0.S1

%Q0.0.2 X

%Q0.0.3 X X

%VFC0.P = 17
%VFC0.S0 = 14
%VFC0.S1 = 20

IN

S

65535

20

17

14

0%VFC0.V

F

TH0

Reflex
output 0

TH1

Reflex
output 1

1 2 3 4

: %VFC0.U = 1 because %VFC is an up-counter

: change %VFC0.S1 to 17

: S input active makes threshold S1 new value to be granted in next count

: a catch of the current value is made, so %VFC0.C = 17

1

2

3

4

TWD USE 10AE 403

Advanced Instructions
Single Down
Counter
Operation

The following is an example of using %VFC in a single down counter mode. The
following configuration elements have been set for this example:
%VFC0.P preset value is 17, while the %VFC0.S0 lower threshold value is 14, and
the %VFC0.S1 upper threshold is 20.

Example:

Reflex
Output

<%VFC.S0 %VFC0.S0 <=< %VFC0.S1 >= %VFC0.S1

%Q0.0.2 X X

%Q0.0.3 X

%VFC0.P = 17
%VFC0.S0 = 14
%VFC0.S1 = 20

IN

S

65535

20

17

14

0%VFC0.V

F

TH0

Reflex
output 0

TH1

Reflex
output 1

1 3 4 5

: %VFC0.U = 0 because %VFC is a down-counter

: change %VFC0.S1 to 17

: S input active makes threshold S1 new value to be granted in next count

1

2

3

4

2

5 : a catch of the current value is made, so %VFC0.C = 17

: change %VFC0.P to 20
404 TWD USE 10AE

Advanced Instructions
Up-Down
Counter
Operation

The following is an example of using %VFC in an up-down counter mode. The
following configuration elements have been set for this example:
%VFC0.P preset value is 17, while the %VFC0.S0 lower threshold value is 14, and
the %VFC0.S1 upper threshold is 20.

Example:

Reflex Output <%VFC.S0 %VFC0.S0 <=< %VFC0.S1 %VFC0.S1

%Q0.0.2 X

%Q0.0.3 X X

%VFC0.P = 17
%VFC0.S0 = 14
%VFC0.S1 = 20

IN

S

65535

20

17

14

0%VFC0.V

F

TH0

Reflex
output 0

TH1

Reflex

output 1

1 3 4 5

: Input IN is set to 1 and input S set to 1

: change %VFC0.S1 to 17

: S input active makes threshold S1 new value to be granted in next count

1

2

3

4

2

5 : a catch of the current value is made, so %VFC0.C = 17

: change %VFC0.P to 20

U

TWD USE 10AE 405

Advanced Instructions
Frequency Meter
Function
Description

The frequency meter function of a %VFC is used to measure the frequency of a
periodic signal in Hz on input IA. The frequency range which can be measured is
from 10 to 20kHz. The user can choose between 2 time bases, the choice being
made by a new object %VFC.T (Time base). A value of 100 = time base of 100 ms
and a value of 1000 = time base of 1 second.

Frequency Meter
Function
Diagram

The following is a frequency meter function diagram:

Time Base Measurement range Accuracy Update

100 ms 100 Hz to 20 kHz 0.05 % for 20 kHz, 10 % for
100 Hz

10 times per second

1 s 10 Hz to 20 kHz 0.005 % for 20 kHz, 10 % for
10 Hz

Once per second

& %VFC Counter

current value

%VFCi.F
Overflow

output

%VFCi.V

Frequency

+

IN %VFCi

S %VFCi
Current Value

measured

(Update flag)

1000 ms 100 ms

Set
current

%VFCi.T

Select

base

IA

Signal to be measured

value to 0

time
406 TWD USE 10AE

Advanced Instructions
Frequency Meter
Operation

The following is a timing diagram example of using %VFC in a frequency meter
mode.

Special Cases The following table shows a list of special operating of the %VFC function block.

IN

S

Timebase

%VFC0.V

1 2 3 4

f1 f2 0 f3 f4 f5f30

1

2

: The first frequency measurement starts here.

: The current frequency value is updated.

: Input IN is 1 and input S is 1

: Change %VFC0.T to 100 ms: this change cancels the current measurement

3

4

and starts another one.

Special case Description

Effect of cold restart (%S0=1) Resets all the %VFC attributes with the values
configured by the user or user application.

Effect of warm restart (%S1=1) Has no effect

Effect of Controller stop The %VFC stops its function and the outputs stay in
their current state.
TWD USE 10AE 407

Advanced Instructions
Transmitting/Receiving Messages - the Exchange Instruction (EXCH)

Introduction A Twido controller can be configured to communicate with Modbus slave devices or
can send and/or receive messages in character mode (ASCII).
TwidoSoft provides the following functions for these communications:

EXCH instruction to transmit/receive messages
Exchange control function block (%MSG) to control the data exchanges

The Twido controller uses the protocol configured for the specified port when
processing an EXCH instruction. Each communication port can be assigned a
different protocol. The communication ports are accessed by appending the port
number to the EXCH or %MSG function (EXCH1, EXCH2, %MSG1, %MSG2).
In addition, TWDLCAE40DRF series controllers implement Modbus TCP
messaging over the Ethernet network by using the EXCH3 intruction and %MSG3
function.

 EXCH
Instruction

The EXCH instruction allows a Twido controller to send and/or receive information
to/from ASCII devices. The user defines a table of words (%MWi:L) containing the
data to be sent and/or received (up to 250 data bytes in transmission and/or
reception). The format for the word table is described in the paragraphs about each
protocol. A message exchange is performed using the EXCH instruction.

Syntax The following is the format for the EXCH instruction:
[EXCHx %MWi:L]
Where: x = serial port number (1 or 2); x = Ethernet port (3); L = total number of
words of the word table (maximum 121). Values of the internal word table %MWi:L
are such as i+L <= 255.
The Twido controller must finish the exchange from the first EXCHx instruction
before a second exchange instruction can be started. The %MSG function block
must be used when sending several messages.

Note: To find out more information about the Modbus TCP messaging instruction
EXCH3, please refer to TCP Modbus Messaging, p. 177.
408 TWD USE 10AE

Advanced Instructions
Exchange Control Function Block (%MSGx)

Introduction

The %MSGx function block manages data exchanges and has three functions:
Communications error checking:
Error checking verifies that the block length (word table) programmed with the
EXCH instruction is large enough to contain the length of the message to be sent
(compare with length programmed in the least significant byte of the first word of
the word table).
Coordination of multiple messages:
To ensure coordination when sending multiple messages, the %MSGx function
block provides the information required to determine when a previous message
is complete.
Transmission of priority messages:
The %MSGx function block allows the current message transmission to be
stopped, in order to allow the immediate sending of an urgent message.

The programming of the %MSGx function block is optional.

Illustration The following is an example of the %MSGx function block.

Note: The "x" in %MSGx signifies the controller port: "x = 1 or 2"
x = 1 or 2, signifies the serial port 1 or 2 of the controller, respectively;
x = 3, signifies the Ethernet network port of the controller (on TWDLCAE40DRF
controllers only). For more information about the %MSG3 function, please refer
to TCP Modbus Messaging, p. 177.

R
%MSG1

D

E

TWD USE 10AE 409

Advanced Instructions
Parameters The following table lists parameters for the %MSGx function block.

If an error occurs when using an EXCH instruction, bits %MSGx.D and %MSGx.E
are set to 1, and system word %SW63 contains the error code for Port 1, and
%SW64 contains the error code for Port 2. See System Words (%SW), p. 517.

Reset Input (R) When Reset Input set to 1:
Any messages that are being transmitted are stopped.
The Fault (Error) output is reset to 0.
The Done bit is set to 1.

A new message can now be sent.

Fault (Error)
Output
(%MSGx.E)

The error output is set to 1 either because of a communications programming error
or a message transmission error. The error output is set to 1 if the number of bytes
defined in the data block associated with the EXCH instruction (word 1, least
significant byte) is greater than 128 (+80 in hexadecimal by FA).
The error output is also set to 1if a problem exists in sending a Modbus message to
a Modbus device. In this case, the user should check wiring, and that the destination
device supports Modbus communication.

Communications
Done output
(%MSGx.D)

When the Done output is set to 1, the Twido controller is ready to send another
message. Use of the %MSGx.D bit is recommended when multiple messages are
sent. If it is not used, messages may be lost.

Parameter Label Value

Reset input (or
instruction)

R At state 1, reinitializes communication: %MSGx.E = 0 and
%MSGx.D = 1.

Comm. done
output

%MSGx.D State 1, comm. done, if:
End of transmission (if transmission)
End of reception (end character received)
Error
Reset the block

State 0, request in progress.

Fault (Error)
output

%MSGx.E State 1, comm. done, if:
Bad command
Table incorrectly configured
Incorrect character received (speed, parity, etc.)
Reception table full (not updated)

State 0, message length OK, link OK.
410 TWD USE 10AE

Advanced Instructions
Transmission of
Several
Successive
Messages

Execution of the EXCH instruction activates a message block in the application
program. The message is transmitted if the message block is not already active
(%MSGx.D = 1). If several messages are sent in the same cycle, only the first
message is transmitted. The user is responsible for managing the transmission of
several messages using the program.
Example of a transmission of two messages in succession on port 2:

Reinitializing
Exchanges

An exchange is cancelled by activating the input (or instruction) R. This input
initializes communication and resets output %MSGx.E to 0 and output %MSGx.D to
1. It is possible to reinitialize an exchange if a fault is detected.
Example of reinitializing an exchange:

LDR %I0.0
AND %MSG2.D
[EXCH2 %MW2:4]
S %M0
LD %MSG2.D
AND %M0
[EXCH2 %MW8:3]
R %M0

%I0.0 %MSG2.D

P EXCH2%MW2:4

%M0
S

EXCH2%MW8:3

%M0
R

%MSG.D %M0

BLK %MSG1
LD %M0
R
END_BLK

%M0 %MSG1

R D

E

TWD USE 10AE 411

Advanced Instructions
Special Cases The following table the special operating cases for the %MSGx function block.

Special Case Description

Effect of a cold restart (%S0=1) Forces a reinitialization of the communication.

Effect of a warm restart (%S1=1) Has no effect.

Effect of a controller stop If a message transmission is in progress, the
controller stops its transfer and reinitializes the
outputs %MSGx.D and %MSGx.E.
412 TWD USE 10AE

Advanced Instructions
15.2 Clock Functions

At a Glance

Aim of this
Section

This section describes the time management functions for Twido controllers.

What's in this
Section?

This section contains the following topics:

Topic Page

Clock Functions 414

Schedule Blocks 415

Time/Date Stamping 418

Setting the Date and Time 420
TWD USE 10AE 413

Advanced Instructions
Clock Functions

Introduction Twido controllers have a time-of-day clock function, which requires the Real-Time
Clock option (RTC) and provides the following:

Schedule blocks are used to control actions at predefined or calculated times.
Time/date stamping is used to assign time and dates to events and measure
event duration.

The Twido time-of-day clock can be accessed by selecting Schedule Blocks from
from the TwidoSoft Software menu. Additionally, the time-of-day clock can be set
by a program. Clock settings continue to operate for up to 30 days when the
controller is switched off, if the battery has been charged for at least six consecutive
hours before the controller is switched off.
The time-of-day clock has a 24-hour format and takes leap years into account.

RTC Correction
Value

The RTC Correction value is necessary for the correct operation of the RTC. Each
RTC unit has its own correction value written on the unit. This value is configurable
in TwidoSoft by using the Configure RTC option from the Controller Operations
dialog box.
414 TWD USE 10AE

Advanced Instructions
Schedule Blocks

Introduction Schedule Blocks are used to control actions at a predefined month, day, and time.
A maximum of 16 schedule blocks can be used and do not require any program
entry.

Parameters The following table lists parameters for a schedule block:

Note: Check system bit %S51 and system word %SW118 to confirm that the Real-
Time Clock (RTC) option is installed see System Bits (%S), p. 510. The RTC option
is required for using schedule blocks.

Parameter Format Function/Range

Schedule block
number

n n = 0 to 15

Configured Check box Check this box to configure the selected schedule block
number.

Output bit %Qx.y.z Output assignment is activated by schedule block: %Mi
or %Qj.k.
This output is set to 1 when the current date and time
are between the setting of the start of the active period
and the setting of the end of the active period.

Start month January to
December

The month to start the schedule block.

End month January to
December

The month to end the schedule block.

Start date 1 - 31 The day in the month to start the schedule block.

End date 1 - 31 The day in the month to end the schedule block.

Start time hh:mm The time-of-day, hours (0 to 23) and minutes (0 to 59),
to start the schedule block.

Stop time hh:mm The time-of-day, hours (0 to 23) and minutes (0 to 59),
to end the schedule block.

Day of week Monday -
Sunday

Check boxes that identify the day of the week for
activation of the schedule block.
TWD USE 10AE 415

Advanced Instructions
Enabling
Schedule Blocks

The bits of system word %SW114 enable (bit set to 1) or disable (bit set to 0) the
operation of each of the 16 schedule blocks.
Assignment of schedule blocks in %SW114:

By default (or after a cold restart) all bits of this system word are set to 1. Use of
these bits by the program is optional.

Output of
Schedule Blocks

If the same output (%Mi or %Qj.k) is assigned by several blocks, it is the OR of the
results of each of the blocks which is finally assigned to this object (it is possible to
have several "operating ranges" for the same output).

Example The following table shows the parameters for a summer month spray program
example:

Using the following program, the schedule block can be disabled through a switch
or a humidity detector wired to input %I0.1.

%SW114

Schedule
block #15

Schedule
block #0

Parameter Value Description

Schedule block 6 Schedule block number 6

Output bit %Q0.2 Activate output %Q0.2

Start month June Start activity in June

End month September Stop activity in September

Start date 21 Start activity on the 21st day of June

End date 21 Stop activity on the 21st day of September

Day of week Monday, Wednesday,
Friday

Run activity on Monday, Wednesday and
Friday

Start time 21:00 Start activity at 21:00

Stop time 22:00 Stop activity at 22:00

LD %I0.1
ST %SW114:X6

%I0.1 %SW114:X6
416 TWD USE 10AE

Advanced Instructions
The following timing diagram shows the activation of output %Q0.2.

Time Dating by
Program

Date and time are both available in system words %SW50 to %SW53 (see System
Words (%SW), p. 517). It is therefore possible to perform time and date stamping in
the controller program by making arithmetic comparisons between the current date
and time and the immediate values or words %MWi (or %KWi), which can contain
setpoints.

%I0.1

%Q0.2

21 June

M W FM W FM W F
TWD USE 10AE 417

Advanced Instructions
Time/Date Stamping

Introduction System words %SW49 to %SW53 contain the current date and time in BCD format
(see Review of BCD Code, p. 356, which is useful for display on or transmission to
a peripheral device. These system words can be used to store the time and date of
an event (see System Words (%SW), p. 517.

Dating an Event To date an event it is sufficient to use assignment operations, to transfer the
contents of system words to internal words, and then process these internal words
(for example, transmission to display unit by EXCH instruction).

Programming
Example

The following example shows how to date a rising edge on input %I0.1.

Once an event is detected, the word table contains:

Note: Date and time and also be set by using the optional Operator Display (see
Time of Day Clock, p. 245).

Encoding Most significant byte Least significant byte

%MW11 Day of the week1

%MW12 00 Second

%MW13 Hour Minute

%MW14 Month Day

%MW15 Century Year

Note: (1) 1 = Monday, 2 = Tuesday, 3 = Wednesday, 4 = Thursday, 5 = Friday, 6
= Saturday, 7 = Sunday.

LDR %I0.0
[%MW11:5 := %SW49:5]P %MW11:5 := %SW49.5

%I0.0
418 TWD USE 10AE

Advanced Instructions
Example of Word
Table

Example data for 13:40:30 on Monday, 19 April, 2002:

Date and time of
the last stop

System words %SW54 to %SW57 contain the date and time of the last stop, and
word %SW58 contains the code showing the cause of the last stop, in BCD format
(see System Words (%SW), p. 517).

Word Value (hex) Meaning

%MW11 0001 Monday

%MW12 0030 30 seconds

%MW13 1340 13 hours, 40 minutes

%MW14 0419 04 = April, 19th

%MW15 2002 2002
TWD USE 10AE 419

Advanced Instructions
Setting the Date and Time

Introduction You can update the date and time settings by using one of the following methods:
TwidoSoft
Use the Set Time dialog box. This dialog box is available from the Controller
Operations dialog box. This is displayed by selecting Controller Operations
from the Controller menu.
System Words
Use system words %SW49 to %SW53 or system word %SW59.

The date and time settings can only be updated when the RTC option cartridge
(TWDXCPRTC) is installed on the controller. Note that the TWDLCA•40DRF series
of compact controllers have RTC onboard.

Using %SW49 to
%SW53

To use system words %SW49 to %SW53 to set the date and time, bit %S50 must
be set to 1. This results in the following:

Cancels the update of words %SW49 to %SW53 via the internal clock.
Transmits the values written in words %SW49 to %SW53 to the internal clock.

Programming Example:

LD %S50
R %S50

LDR %I0.1
[%SW49 := %MW10]
[%SW50 := %MW11]
[%SW51 := %MW12]
[%SW52 := %MW13]
[%SW53 := %MW14]
S %S50

%S50

%I0.1
P %SW49 := %MW10

%SW50 := %MW11

%SW51 := %MW12

%S50

S

R

%S50

%SW52 := %MW13

%SW53 := %MW14
420 TWD USE 10AE

Advanced Instructions
Words %MW10 to %MW14 will contain the new date and time in BCD format (see
Review of BCD Code, p. 356) and will correspond to the coding of words %SW49 to
%SW53.
The word table must contain the new date and time:

Example data for Monday, 19 April, 2002:

Using %SW59 Another method of updating the date and time is to use system bit %S59 and date
adjustment system word %SW59.
Setting bit %S59 to 1 enables adjustment of the current date and time by word
%SW59 (see System Words (%SW), p. 517). %SW59 increments or decrements
each of the date and time components on a rising edge.

Encoding Most significant byte Least significant byte

%MW10 Day of the week1

%MW11 Second

%MW12 Hour Minute

%MW13 Month Day

%MW14 Century Year

Note: (1) 1 = Monday, 2 = Tuesday, 3 = Wednesday, 4 = Thursday, 5 = Friday, 6
= Saturday, 7 = Sunday.

Word Value (hex) Meaning

%MW10 0001 Monday

%MW11 0030 30 seconds

%MW12 1340 13 hours, 40 minutes

%MW13 0419 04 = April, 19th

%MW14 2002 2002
TWD USE 10AE 421

Advanced Instructions
Application
Example

The following front panel is created to modify the hour, minutes, and seconds of the
internal clock.

Description of the Commands:
The Hours/Minutes/Seconds switch selects the time display to change using
inputs %I0.2, %I0.3, and %I0.4 respectively.
Push button "+" increments the selected time display using input %I0.0.
Push button "-" decrements the selected time display using input %I0.1.

Hours

Minutes

Seconds+ -

Hour Minute Second

13 40 30
422 TWD USE 10AE

Advanced Instructions
The following program reads the inputs from the panel and sets the internal clock.

LD %M0
ST %S59
LD %I0.2
ANDR %I0.0
ST %SW59:X3
LD %I0.2
ANDR %I0.1
ST %SW59:X11
LD %I0.3
ANDR %I0.0
ST %SW59:X2
LD %I0.3
ANDR %I0.1
ST %SW59:X10
LD %I0.4
ANDR %I0.0
ST %SW59:X1
LD %I0.4
ANDR %I0.1
ST %SW59:X9

(Hour)

(Minute)

(Second)

%M0

%I0.2 %I0.0 %SW59:X3
P

%S59

%I0.4 %I0.1 %SW59:X9
P

%I0.4 %I0.0 %SW59:X1
P

%I0.3 %I0.1 %SW59:X10
P

%I0.2 %I0.1 %SW59:X11
P

%I0.3 %I0.0 %SW59:X2
P

TWD USE 10AE 423

Advanced Instructions
15.3 PID Function

At a Glance

Aim of this
Section

This section describes the behavior, functionalities and implementation of the PID
function.

What's in this
Section?

This section contains the following topics:

Note: To find out quick setup information about your PID controller as well as the
PID autotuning, please refer to the Twido PID Quick Start Guide available in
electronic form on your TwidoSoft installation and documentation CD.

Topic Page

Overview 425

Principal of the Regulation Loop 426

Development Methodology of a Regulation Application 427

Compatibilities and Performances 428

Detailed characteristics of the PID function 429

How to access the PID configuration 432

General tab of PID function 434

Input tab of the PID 437

PID tab of PID function 439

AT tab of PID function 442

Output tab of the PID 447

How to access PID debugging 450

Animation tab of PID function 452

Trace tab of PID function 454

PID States and Errors Codes 456

PID Tuning With Auto-Tuning (AT) 460

PID parameter adjustment method 469

Role and influence of PID parameters 472

Appendix 1: PID Theory Fundamentals 476

Appendix 2: First-Order With Time Delay Model 478
424 TWD USE 10AE

Advanced Instructions
Overview

General The PID regulation function is a TwidoSoft programming language function.
It allows programming of PID regulation loops on Twido version 1.2 or higher
controllers.

This function is particularly adapted to:
Answering the needs of the sequential process which need the auxiliary
adjustment functions (examples: plastic film packaging machine, finishing
treatment machine, presses, etc.)
Responding to the needs of the simple adjustment process (examples: metal
furnaces, ceramic furnaces, small refrigerating groups, etc.)

It is very easy to install as it is carried out in the:
Configuration
and Debug

screens associated with a program line (operation block in Ladder Language or by
simply calling the PID in Instruction List) indicating the number of the PID used.
Example of a program line in Ladder Language:

Key Features The key features are as follows:
Analog input,
Linear conversion of the configurable measurement,
High or low configurable input alarm,
Analog or PWM output,
Cut off for the configurable output,
Configurable direct or inverse action.

Note: In any given Twido automation application, the maximum number of
configurable PID functions is 14.

PID 0
TWD USE 10AE 425

Advanced Instructions
Principal of the Regulation Loop

At a Glance The working of a regulation loop has three distinct phases:
The acquisition of data:

Measurements from the process’ sensors (analog, encoders)
Setpoint(s) generally from the controller's internal variables or from data from
a TwidoSoft animation table

Execution of the PID regulation algorithm
The sending of orders adapted to the characteristics of the actuators to be driven
via the discrete (PWM) or analog outputs

The PID algorithm generates the command signal from:
The measurement sampled by the input module
The setpoint value fixed by either the operator or the program
The values of the different corrector parameters

The signal from the corrector is either directly handled by a controller analog output
card linked to the actuator, or handled via a PWM adjustment on a discrete output
of the controller.

Illustration The following diagram schematizes the principal of a regulation loop.

Corrector

IN
P

U
T

S

O
U

T
P

U
T

S

PLC

Adapter

S
E

N
S

O
R

S

Process to order

A
C

T
U

A
T

O
R

S

Animation Table Running
TwidoSoft

M
E

A
S

U
R

E

O
R

D
E

R

426 TWD USE 10AE

Advanced Instructions
Development Methodology of a Regulation Application

Diagram of the
Principal

The following diagram describes all of the tasks to be carried out during the creation
and debugging of a regulation application.

Note: The order defined depends upon your own work methods, and is provided as
an example.

PID Application / Configuration
Configuration of

Digital, Analog interfaces

Application / Data
Input of constant and
mnemonic data, and

numerical values

Programming: Ladder, List
Regulation functions,

Operator dialogue

API /Connector
Transfer of the application

in the PLC

Animation tables
 Variable table

Debugging
 program
 and adjustment

Debugging
PC

File / Save
Storing the
application

Operation
of control

loops

Operation of the
process via PC

Documentation
Application

folder
TWD USE 10AE 427

Advanced Instructions
Compatibilities and Performances

At a Glance The Twido PID function is a function that is available for Twido version 1.2 and
higher, which is why its installation is subject to a number of hardware and software
compatibilities described in the following paragraphs.
In addition, this function requires the resources presented in the Performances
paragraph.

Compatibility The Twido PID function is available on Twidos with version 1.2 or higher software.
If you have Twidos with an earlier version of the software, you can update your
firmware in order to use this PID function.

In order to configure and program a PID on these different hardware versions, you
must have version 1.2 of the TwidoSoft software.

Performance The PID regulation loops have the following performances:

Note: The version 1.0 analog input/output modules can be used as PID input/
output modules without needing to be updated.

Description Time

Loop execution time 0.4 ms
428 TWD USE 10AE

Advanced Instructions
Detailed characteristics of the PID function

General The PID function completes a PID correction via an analog measurement and
setpoint in the default [0-10000] format and provides an analog command in the
same format or a Pulse Width Modulation (PWM) on a digital output.
All the PID parameters are explained in the windows used to configure them. Here,
we will simply summarize the functions available, indicate measurement values and
describe how they integrate into PID in a functional flow diagram.

Details of
Available
Functions

The following table indicates the different functions available and their scale:

Note: For use at full scale (optimum resolution), you can configure your analog
input connected to the PID's measurement branch in 0-10000 format. However, if
you use the default configuration (0-4095), the controller will function correctly.

Note: In order for regulation to operate correctly, it is essential that the Twido PLC
is in periodic mode. The PID function is then executed periodically on each cycle,
and the PID input data sampling complies with the period set in configuration (see
table below).

Function Scale and comment

Linear conversion of input Allows you to convert a value in 0 to 10000 format
(analog input module resolution) to a value
between -32768 and 32767

Proportional gain Using a factor of 100, its value is between 1 and
10000. This corresponds to a gain value varying
between 0.01 and 100.
Note: If you enter an invalid value of gain
(negative or null gain), TwidoSoft ignores this
user-setting and automatically assigns the default
value of 100 to this factor.

Integral time Using a timebase of 0.1 seconds, its value is
between 0 and 20000. This corresponds to an
integral time of between 0 and 2000.0 seconds.

Derivative time Using a timebase of 0.1 seconds, its value is
between 0 and 10000. This corresponds to a
derivative time of between 0 and 1000.0 seconds.
TWD USE 10AE 429

Advanced Instructions
Sampling period Using a timebase of 0.01 seconds, its value is
between 1 and 10000. This corresponds to a
sampling period of between 0.01 and 100
seconds.

PWM output Using a timebase of 0.1 seconds, its value is
between 1 and 500. This corresponds to a
modulation period of between 0.1 and 50
seconds.

Analog output Value between 0 and +10000

High level alarm on process variable This alarm is set after conversion. It is set to a
value between -32768 and 32767 if conversion is
activated and to 0 and 10000 if it is not.

Low level alarm on process variable This alarm is set after conversion. It is set to a
value between -32768 and 32767 if conversion is
activated and to 0 and 10000 if it is not.

High limit value on output This limit value is between 0 and 10000 for an
analog output value. When PWM is active, the
limit corresponds to a percentage of the
modulated period. 0% for 0 and 100% for 10000.

Low limit value on output This limit value is between 0 and 10000 for an
analog output value. When PWM is active, the
limit corresponds to a percentage of the
modulated period. 0% for 0 and 100% for 10000.

Manual mode When manual mode is active the output is
assigned a fixed value set by the user. This output
value is between 0 and 10000 (0 to 100% for
PWM output).

Direct or inverse action Direct or inverse is available and acts directly on
the output.

Auto-Tuning (AT) This function provides automatic tuning of the Kp,
Ti, Td and Direct/Reverse Action parameters to
achieve optimum convergence of the control
process.

Note: For a more in-depth explanation of how each of the functions described in
the above table works, refer to the diagram below.

Function Scale and comment
430 TWD USE 10AE

Advanced Instructions
Operating
Principles

The following diagram presents the operating principle of the PID function.

Note:The parameters used are described in the table on the page above and in the
configuration screens.

Sampling period

The Setpoint branch

The Measurement branch

Deviat
SET POINT

PROCESS
VALUE
P.V

PID CORRECTOR

The PID action

SET POINT
S.P

ε

TI

TD
 d
 dt

 KP

+
+

+

Integrate

Derived

+

-

MEASURE

The PID operation modes

Limiter

High limit

Low limit

Manual

AUTO

OPERATOR DIALOGUE

Twido Soft PC

1

0

MEASUREMENT
USED

Conversion

High alarm

Low alarm

Analog output

PWM

Modulation
period
TWD USE 10AE 431

Advanced Instructions
How to access the PID configuration

At a Glance The following paragraphs describe how to access the PID configuration screens on
TWIDO controllers.

Procedure The following table describes the procedure for accessing the PID configuration
screens:

Step Action

1 Check that you are in offline mode.

2 Open the browser.
Result:

TwidoSoft - no heading
File Edit Display Tools Hardware Software

Software

TWDLMDA40DUK
Hardware

Port 1: Remote Link, 1

Expansion bus

Timers

PLS/PWM

Drum controllers

Programs

Animation tables
Documentation

Symbols

 LIFO/FIFO registers
Fast Counters

Counters
Constants

Very fast counters

Schedule blocks

123

123

77

123

no heading

PID PID
432 TWD USE 10AE

Advanced Instructions
3 Double-click on PID.
Result: The PID configuration window opens and displays the General (See
General tab of PID function, p. 434) tab by default.
Note: You can also right-click on PID and select the Edit option or select
Software → PID from the menu or use the Program → Configuration Editor
→ PID Icon menu or, if using the latter method, select the PID and click on the
Magnifying glass icon to select a specific PID.

Step Action
TWD USE 10AE 433

Advanced Instructions
General tab of PID function

At a Glance When you open PID from the browser, you open the PID configuration window. This
window allows you to:

configure each TWIDO PID,
debug each TWIDO PID,

When you open this screen, if you are:
in offline mode: you will go to the General tab by default and will have access to
the configuration parameters,
in online mode: you will go to the Animation tab and will have access to the
debugging and adjustment parameters.

The following paragraphs describe the General tab.

Note: In some cases, the grayed-out tabs and fields may not be accessible for any
of the two reasons listed below: The "PID only" operating mode is selected, which
prevents access to the AT tab parameters that are no longer needed.

The operating mode (offline or online) which is currently active does not allow
you to access these parameters.
The "PID only" operating mode is selected, which prevents access to the AT tab
parameters that are no longer needed.
434 TWD USE 10AE

Advanced Instructions
General Tab of
the PID Function

The screen below is used to enter the general PID parameters.

PID number

Help

PID ?

0

OK Cancel

Setpoint

Previous Next

 PID Output

PID controller

Mes

 Input

D/I

General Input PID AT Output Animation Trace

Configured

Operating mode: PID

Word address:

 AT

PV
Limit

AT

PID States
TWD USE 10AE 435

Advanced Instructions
Description The table below describes the settings that you may define.

Field Description

PID number Specify the PID number that you wish to configure here.
The value is between 0 and 13, 14 PID maximum per application.

Configured To configure the PID, this box must be checked. Otherwise no action can
be performed in these screens and the PID, though it exists in the
application, cannot be used.

Operating mode Specify the desired operating mode here. You may choose from three
operating modes and a word address, as follows:

PID
AT
AT+PID
Word address

Word address You may provide an internal word in this text box (%MW0 to %MW2999)
that is used to programmatically set the operating mode. The internal
word can take three possible values depending on the operating mode
you wish to set:

%MWx = 1 (to set PID only)
%MWx = 2 (to set AT + PID)
%MWx = 3 (to set AT only)

PID States If you check to enable this option, you may provide a memory word in
this text box (%MW0 to %MW2999) that is used by the PID controller to
store the current PID state while running the PID controller and/or the
autotuning function (for more details, please refer to PID States and
Errors Codes, p. 456.)

Diagram The diagram allows you to view the different possibilities available for
configuring your PID.
436 TWD USE 10AE

Advanced Instructions
Input tab of the PID

At a Glance The tab is used to enter the PID input parameters.

Input tab of the
PID Function

The screen below is used to enter the PID input parameters.

Note: It is accessible in offline mode.

PID number

Help

PID ?

0

General Input PID AT Output Animation Trace

OK Cancel

Setpoint

Authorize

Min value:

Max value:

Low:

High:

Output:

Output:

%IW1.0

 Measure

Previous Next

 Conversion Alarms

Authorize

 PID Output

PID controller

Mes

 Input

D/I
TWD USE 10AE 437

Advanced Instructions
Description The table below describes the settings that you may define.

Field Description

PID number Specify the PID number that you wish to configure here.
The value is between 0 and 13, 14 PID maximum per application.

Measurement Specify the variable that will contain the process value to be controlled
here.
The default scale is 0 to 10000. You can enter either an internal word
(%MW0 to %MW2999) or an analog input (%IWx.0 to %IWx.1).

Conversion Check this box if you wish to convert the process variable specified as a
PID input.
If this box is checked, both the Min value and Max value fields are
accessible.
The conversion is linear and converts a value between 0 and 10,000 into
a value for which the minimum and maximum are between -32768 and
+32767.

Min value
Max value

Specify the minimum and maximum of the conversion scale. The
process variable is then automatically rescaled within the [Min value to
Max value] interval.
Note: The Min value must always be less than the Max value.
Min value or Max value can be internal words (%MW0 to %MW2999),
internal constants (%KW0 to %KW255) or a value between -32768 and
+32767.

Alarms Check this box if you wish to activate alarms on input variables.
Note: The alarm values should be determined relative to the process
variable obtained after the conversion phase. They must therefore be
between Min value and Max value when conversion is active.
Otherwise they will be between 0 and 10000.

Low
Output

Specify the high alarm value in the Low field.
This value can be an internal word (%MW0 to %MW2999), an internal
constant (%KW0 to %KW255) or a direct value.
Output must contain the address of the bit which will be set to 1 when
the lower limit is reached. Output can be either an internal bit (%M0 to
%M255) or an output (%Qx.0 to %Qx.32).

High
Output

Specify the low alarm value in the High field.
This value can be an internal word (%MW0 to %MW2999), an internal
constant (%KW0 to %KW255) or a direct value.
Output must contain the address of the bit which will be set to 1 when
the upper limit is reached. Output can be either an internal bit (%M0 to
%M255) or an output (%Qx.0 to %Qx.32).

Diagram The diagram allows you to view the different possibilities available for
configuring your PID.
438 TWD USE 10AE

Advanced Instructions
PID tab of PID function

At a Glance The tab is used to enter the internal PID parameters.

PID tab of the PID
Function

The screen below is used to enter the internal PID parameters.

Note: It is accessible in offline mode.

PID number

Help

PID ?

0

OK Cancel

Setpoint

Previous Next

 PID Output

PID controller

Mes

 Input

D/I

General Input PID AT Output Animation Trace

Kp (x 0.01)

 Setpoint Parameters Sampling period

500Ti (0.1 s)

Td (0.1 s)

(10 ms)
TWD USE 10AE 439

Advanced Instructions
Description The table below describes the settings that you may define.

Field Description

PID number Specify the PID number that you wish to configure here.
The value is between 0 and 13, 14 PID maximum per application.

Setpoint Specify the PID setpoint value here. This value can be an internal word
(%MW0 to %MW2999), an internal constant (%KW0 to %KW255) or a
direct value.
This value must therefore be between 0 and 10000 when conversion
is inhibited. Otherwise it must be between the Min value and the
Max value for the conversion.

Kp * 100 Specify the PID proportional coefficient multiplied by 100 here.
This value can be an internal word (%MW0 to %MW2999), an internal
constant (%KW0 to %KW255) or a direct value.
The valid range for the Kp parameter is: 0 < Kp < 10000.
Note: If Kp is mistakenly set to 0 (Kp ≤ 0 is invalid), the default value
Kp=100 is automatically assigned by the PID function.

TI (0.1 sec) Specify the integral action coefficient here for a timebase of 0.1
seconds.
This value can be an internal word (%MW0 to %MW2999), an internal
constant (%KW0 to %KW255) or a direct value.
It must be between 0 and 20000.
Note: To disable the integral action of the PID, set this coefficient to 0.

Td (0.1 sec) Specify the derivative action coefficient here for a timebase of 0.1
seconds.
This value can be an internal word (%MW0 to %MW2999), an internal
constant (%KW0 to %KW255) or a direct value.
It must be between 0 and 10000.
Note: To disable the derivative action of the PID, set this coefficient to
0.

Sampling period Specify the PID sampling period here for a timebase of 10-2 seconds
(10 ms).
This value can be an internal word (%MW0 to %MW2999), an internal
constant (%KW0 to %KW255) or a direct value.
It must be between 1 (0.01 s) and 10000 (100 s).

Diagram The diagram allows you to view the different possibilities available for
configuring your PID.
440 TWD USE 10AE

Advanced Instructions
Note: When AT is enabled, Kp, Ti and Td parameters are no longer set by the user
for they are automatically and programmatically set by the AT algorithm. In this
case, you must enter in these fields an internal word only (%MW0 to %MW2999).
Caution: Do not enter an internal constant or a direct value when AT is enable, for
this will trigger an error when running your PID application.
TWD USE 10AE 441

Advanced Instructions
AT tab of PID function

At a Glance The setting of correct PID parameters may be tedious, time-consuming and error-
prone. All these make process control difficult to setup for the yet experienced, but
not necessarily process control professional user. Thus, optimum tuning may
sometimes be difficult to achieve.
The PID Auto-Tuning algorithm is designed to determine autmatically and
adequately the following four PID terms:

Gain factor,
Integral value,
Derivative value, and
Direct or Reverse action.

Thus, the AT function can provide rapid and optimum tuning for the process loop.

AT
Requirements

PID Auto-tuning is particularly suited for temperature control processes.
In a general manner, the processes that the AT function can be used to control must
meet the following requirements:

the process is mostly linear over the entire operating range,
the process response to a level change of the analog output follows a transient
asymptotic pattern, and
there is little disturbance in process variables. (In the case of a temperature
control process, this implies there is no abnormally high rate of heat exchange
between the process and its environment.)
442 TWD USE 10AE

Advanced Instructions
AT Operating
Principle

The following diagram describes the operating principle of the AT function and how
it interacts with the PID loops:

SAMPLING
 PERIOD

+

-

ALARM HIGH

TI

KP

PID controller

Derivative

Integral

+

+

+

TD d
dt

є

dt∫

NUMERICAL
OUTPUT LIMITER

HIGH LIMIT

LOW LIMIT

DIRECT/REVERSE
ACTION Analog output

Autotuning algorithm
External

measurement

CONVERSION

ALARM
LOW

SETPOINT

AT SETPOINT

Operation mode

MANUAL
OUTPUT

OUTPUT
VARIABLE

Auto/manual

Digital

output

CONTROL
PERIOD

Operation mode

SAMPLING
PERIOD
TWD USE 10AE 443

Advanced Instructions
AT Tab of the PID
function

The screen below is used to enable/disable the AT function and enter the AT
parameters.

Note: It is accessible in offline mode only.

PID number

Help

PID ?

0

General Input PID AT Output Animation Trace

OK Cancel

Setpoint

Authorize

Previous Next

 Process Variable (PV) Limit

 PID Output

PID controller

 Input

D/I

 AT mode AT Output Setpoint

 AT

PV
Limit

AT

Mes
444 TWD USE 10AE

Advanced Instructions
Description

The table below describes the settings that you may define.

WARNING
The Process Variable (PV) Limit and the Output Setpoint values
must be set carefully.
PID Auto-Tuning is an open-loop process that is acting directly on the
control process without regulation or any limitation other than provided
by the Process Variable (PV) Limit and the Output Setpoint. Therefore,
both values must be carefully selected within the allowable range as
specified by the process to prevent potential process overload.

Failure to follow this precaution can result in death, serious injury,
or equipment damage.

Field Description

Authorize Check this box if you wish to enable the AT mode.
There are two ways to use this checkbox, depending on whether you set the
operating mode manually or via a word address in the General tab of the PID
function:

If you set the Operating mode to PID+AT or AT from the General tab (see
General tab of PID function, p. 434), then the Authorize option is
automatically checked and grayed out (it cannot be unchecked).
If you set the operating mode via a word address %MWx (%MWx = 2:
PID+AT; %MWx = 3: AT), then you must check the Authorize option
manually to allow configuring the AT parameters.

Result: In either of the above cases, all the fields in this AT tab configuration
screen become active and you must fill in the Setpoint and Output fields with
the appropriate values.

Process
Variable
(PV) Limit

Specify the limit that the measured process variable shall not exceed during the
AT process. This parameter provides safety to the control system, as AT is an
open loop process.
This value can be an internal word (%MW0 to a maximum of %MW2999,
depending on amount of system memory available), an internal constant
(%KW0 to %KW255) or a direct value.
This value must therefore be between 0 and 10000 when conversion is
inhibited. Otherwise it must be between the Min value and the Max value for
the conversion.
TWD USE 10AE 445

Advanced Instructions
Calculated Kp,
Ti, Td
Coefficients

Once tha AT process is complete, the calculated Kp, Ti and Td PID coefficients:
are stored in their respective memory words (%MWx), and
can be viewed in the Animation tab, in TwidoSoft online mode only.

AT Output
setpoint

Specify the AT output value here. This is the value of the step-change that is
applied to the process.
This value can be an internal word (%MW0 to %MW2999), an internal constant
(%KW0 to %KW255) or a direct value.
This value must therefore be between 0 and 10000.
Note: The AT Output Setpoint must always be larger than the output last
applied to the process.

Note: When the AT function is enabled, constants (%KWx) or direct values are no
longer allowed, only memory words are allowed in the following set of PID fields:

Kp, Ti and Td parameters must be set as memory words (%MWx) in the PID
tab;
Action field is automatically set to "Address bit" in the OUT tab;
Bit box must be filled in with an adequate memory bit (%Mx) in the OUT tab.

Field Description
446 TWD USE 10AE

Advanced Instructions
Output tab of the PID

At a Glance The tab is used to enter the PID output parameters.

Ouput Tab of the
PID Function

The screen below is used to enter the internal PID parameters.

Note: It is accessible in offline mode.

PID number

Help

PID ?

0

OK Cancel

Setpoint

Previous Next

 PID Output

PID controller

Mes

 Input

D/I

 AT

Setpoint
AT

AT

General Input PID AT Output Animation Trace

 Action Limits Output PWM

Address bit Authorize

Min

Max

Bit Bit

 Manual Mode

Authorize

Bit Output

 Output
 analog

Period
(0.1 s)

Output%I

%IW

%IW %IW

%IW

%IW

%IW

Authorize
TWD USE 10AE 447

Advanced Instructions
Description The table below describes the settings that you may define.

Field Description

PID number Specify the PID number that you wish to configure here.
The value is between 0 and 13, 14 PID maximum per application.

Action Specify the type of PID action on the process here. Three options are
available: Reverse, Direct or bit address.
If you have selected bit address, you can modify this type via the
program, by modifying the associated bit which is either an internal bit
(%M0 to %M255) or an input (%Ix.0 to %Ix.32).
Action is direct if the bit is set to 1 and reverse if it is not.
Note: When AT is enabled, the Auto-Tuning algorithm automatically
determines the correct type of action direct or reverse for the control
process. In this case, only one option is available from the Action
dropdown list: Address bit. You must then enter in the associated Bit
textbox an internal word (%MW0 to %MW2999). Do not attempt to
enter an internal constant or a direct value in the Bit textbox, for this will
trigger an execution error.

Limits
Bit

Specify here whether you want to place limits on the PID output. Three
options are available: Enable, Disable or bit address.
If you have selected bit address, you can enable (bit to 1) or disable (bit
to 0) limit management by the program, by modifying the associated bit
which is either an internal bit (%M0 to %M255) or an input (%Ix.0 to
%Ix.32).

Min.
Max.

Set the high and low limits for the PID output here.
Note: The Min. must always be less than the Max..
Min. or Max. can be internal words (%MW0 to %MW2999), internal
constants (%KW0 to %KW255) or a value between 1 and 10000.

Manual mode
Bit
Output

Specify here whether you want to change the PID to manual mode.
Three options are available: Enable, Disable or bit address.
If you have selected bit address, you can switch to manual mode (bit to
1) or switch to automatic mode (bit to 0) using the program, by modifying
the associated bit which is either an internal bit (%M0 to %M255) or an
input (%Ix.0 to %Ix.32).
The Output of manual mode must contain the value that you wish to
assign to the analog output when the PID is in manual mode.
This Output can be either a word (%MW0 to %MW2999) or a direct
value in the [0-10000] format.

Analog output Specify the PID output in auto mode here.
This Analog output can be %MW-type (%MW0 to %MW2999) or
%QW-type (%QWx.0).
448 TWD USE 10AE

Advanced Instructions
PWM output
enabled
Period (0.1s)
Output

Check this box if you want to use the PWM function of PID.
Specify the modulation period in Period (0.1s). This period must be
between 1 and 500 and can be an internal word (%MW0 to %MW2999)
or an internal constant (%KW0 to %KW255).
Specify the PWM output bit as the value in Output. This can be either
an internal bit (%M0 to %M255) or an output (%Qx.0 to %Qx.32).

Diagram The diagram allows you to view the different possibilities available for
configuring your PID.

Note: The term Reverse in the action field is used to
reach a high setpoint (e.g.: for heating)

The term Direct in the action field is used to reach a low
setpoint (e.g.: for cooling)

Field Description

°C
setpoint

t

°C

setpoint

t

TWD USE 10AE 449

Advanced Instructions
How to access PID debugging

At a Glance The following paragraphs describe how to access the PID debugging screens on
TWIDO controllers.

Procedure The following table describes the procedure for accessing the PID debugging
screens:

Step Action

1 Check that you are in online mode.

2 Open the browser.
Result:

TwidoSoft - no heading

Software

TWDLMDA40DUK
Hardware

Port 1: Remote Link, 1

Expansion bus

Timers

PLS/PWM

Drum controllers

Programs

Animation tables
Documentation

Symbols

 LIFO/FIFO registers
Fast Counters

Counters
Constants

Very fast counters

Schedule blocks

123

123

77

123

no heading

PID PID

File Edit Display Tools Hardware Software
450 TWD USE 10AE

Advanced Instructions
3 Double-click on PID.
Result: The PID configuration window opens and displays the Animation (See
Animation tab of PID function, p. 452) tab by default.
Note: You can also right-click on PID and select the Edit option or select
Software → PID from the menu or use the Program → Configuration Editor
→ PID Icon menu or, if using the latter method, select the PID and click on the
Magnifying glass icon to select a specific PID.

Step Action
TWD USE 10AE 451

Advanced Instructions
Animation tab of PID function

At a Glance The tab is used to debug the PID.
The diagram depends on the type of PID control that you have created. Only
configured elements are shown.

The display is dynamic. Active links are shown in red and inactive links are shown
in black.

Animation Tab of
PID Function

The screen below is used to view and debug the PID.

Note: It is accessible in online mode.

PID number

PID ?

0

General Inpu PID AT Outpu Animatio Trace

Create animation
table file

HelpOK Cancel Previous Next

Setpoin

0

 PID

PID

 Input

D/I

22/03/04 14:35 Autotuning in progress

236

0 0 0

150

PID

 Operating mode List of PID states

Ts

Kp Ti Td

PV
Limit AT

 AT

Mes

1500

0 0

20

 Period

1000

 Output Setpoint
452 TWD USE 10AE

Advanced Instructions
Description The following table describes the different zones of the window.

Field Description

PID number Specify the PID number that you wish to debug here.
The value is between 0 and 13, 14 PID maximum per application.

Operating mode This field shows the current PID operating mode.

List of PID states This dropdown list allows you to view the last 15 PID states in real time.
This list is updated with each change of state indicating the date and time
of the change as well as the current state.

Create an
Animation Table

Click on Create an Animation Table, to create a file containing all the
variables shown in the diagram to enable you modify them online and
debug your PID.
TWD USE 10AE 453

Advanced Instructions
Trace tab of PID function

At a Glance This tab allows you to view PID operation and to make adjustments to the way it
behaves.

The graphs begin to be traced as soon as the debug window is displayed.

Animation Tab of
PID Function

The screen below is used to view the PID control.

Note: It is accessible in online mode.

PID number

Help

PID ?

0

General Input PID AT Output Animation Trace

OK Cancel Previous Next

30 min
60 min
45 min
30 min
15 min

1000

0
30 0

Initialize

Setpoint Measure

Detach

15

900

800

700

600

500

400

300

200

100
454 TWD USE 10AE

Advanced Instructions
Description The following table describes the different zones of the window.

Field Description

PID number Specify the PID number that you wish to view here.
The value is between 0 and 13, 14 PID maximum per application.

Chart This zone displays the setpoint and process value graphs.
The scale on the horizontal axis (X) is determined using the menu to the
top right of the window.
The scale on the vertical axis is determined using the PID input
configuration values (with or without conversion). It is automatically
optimized so as to obtain the best view of the graphs.

Horizontal axis
scale menu

This menu allows you to modify the scale of the horizontal axis. You can
choose from 4 values: 15, 30, 45 or 60 minutes.

Initialize This button clears the chart and restarts tracing the graphs.
TWD USE 10AE 455

Advanced Instructions
PID States and Errors Codes

At a Glance In addition to the List of PID States available from the Animation dialog box (see
Animation tab of PID function, p. 452) that allows to view and switch back to one of
the 15 latest PID states, the Twido PID controller also has the ability to record the
current state of both the PID controller and the AT process to a user-defined memory
word.
To find out how to enable and configure the PID state memory word (%MWi) see
General tab of PID function, p. 434.

PID State
Memory Word

The PID state memory word can record any of three types of PID information, as
follows:

Current state of the PID controller (PID State)
Current state of the autotuning process (AT State)
PID and AT error codes

PID State
Memory Word

The following is the PID controller state versus memory word hexadecimal coding
concordance table:

Note: The PID state memory word is read-only.

PID State hexadecimal notation Description

0000h PID control is not active

2000h PID control in progress

4000h PID setpoint has been reached
456 TWD USE 10AE

Advanced Instructions
Description of AT
State

The autotuning process is divided into 4 consecutive phases. Each phase of the
process must be fulfilled in order to bring the autotuning to a successful completion.
The following process response curve and table describe the 4 phases of the Twido
PID autotuning:

The autotuning phases are described in the following table:

AT Phase Description

1 Phase 1 is the stabilization phase. It starts at the time the user launches the
AT process. During this phase, the Twido autotuning performs checks to
ensure that the process variable is in steady state.
Note: The output last applied to the process before start of the autotuning is
used as both the starting point and the relaxation point for the autotuning
process.

2 Phase 2 applies the fist step-change to the process. It produces a process
step-response similar to the one shown in the above figure.

PID number

Help

PID ?

0

General Input PID AT Output Animation Trace

OK Cancel Previous Next

30 min45 min
1000

0
45 0

Initialize

Setpoint Measure

Detach

15

900

800

700

600

500

400

300

200

100

30
Phase 1:
Stabilization

Phase 2: First
Step-Response

Phase 3:
Relaxation

Phase 4: Second
Step-Response

End of Autotuning
(Computing the
AT parameters)
TWD USE 10AE 457

Advanced Instructions
AT State Memory
Word

The following is the PID controller state versus memory word hexadecimal coding
concordance table:

3 Phase 3 is the relaxation phase that starts when the first step-response has
stabilized.
Note: Relaxation occurs toward equilibrium that is determined as the output
last applied to the process before start of the autotuning.

4 Phase 4 applies the second step-change to the process in the same amount
and manner as in Phase 2 described above. The autotuning process ends and
the AT parameters are computed and stored in their respective memory words
upon completion of Phase 4.
Note: After this phase is complete, the process variable is restored to the
output level last applied to the process before start of the autotuning.

AT Phase Description

AT State hexadecimal notation Description

0100h Autotuning phase 1 in progress

0200h Autotuning phase 2 in progress

0400h Autotuning phase 3 in progress

0800h Autotuning phase 4 in progress

1000h Autotuning process complete
458 TWD USE 10AE

Advanced Instructions
PID and AT Error
Codes

The following table describes the potential execution errors that may be
encountered during both PID control and autotuning processes:

PID/AT
Processes

Error code
(hexadecimal) Description

PID Error 8001h Operating mode value out of range

8002h Linear conversion min and max equal

8003h Upper limit for digital output lower than lower limit

8004h Process variable limit out of linear conversion range

8005h Process variable limit less than 0 or greater than 10000

8006h Setpoint out of linear conversion range

8007h Setpoint less than 0 or greater than 10000

8008h Control action different from action determined at AT start

Autotuning
Error

8009h Autotuning error: the process variable (PV) limit has been
reached

800Ah Autotuning error : due to either oversampling or output
setpoint too low

800Bh Autotuning error: Kp is zero

800Ch Autotuning error: the time constant is negative

800Dh Autotuning error: delay is negative

800Eh Autotuning error: error calculating Kp

800Fh Autotuning error: time constant over delay ratio > 20

8010h Autotuning error: time constant over delay ratio < 2

8011h Autotuning error: the limit for Kp has been exceeded

8012h Autotuning error: the limit for Ti has been exceeded

8013h Autotuning error: the limit for Td has been exceeded
TWD USE 10AE 459

Advanced Instructions
PID Tuning With Auto-Tuning (AT)

Overview of PID
Tuning

The PID control function relies on the following three user-defined parameters: Kp,
Ti and Td. PID tuning aims at determining these process parameters accurately to
provide optimum control of the process.

Scope of the
Auto-Tuning

TheAT function of the Twido PLC is especially suited for automatic tuning of thermal
processes. As values of the PID parameters may vary greatly from one control
process to another, the auto-tuning function provided by the Twido PLC can help
you determine more accurate values than simply provided by best guesses, with
less effort.

Auto-Tuning
Requirements

When using the auto-tuning function, make sure the control process and the Twido
PLC meet all of the following four requirements:

The control process must be an open-loop, stable system.
At the start of the auto-tuning run, the control process must be in steady state with
a null process input (e.g.: an oven or a furnace shall be at ambient temperature.)
During operation of the auto-tuning, make sure that no disturbances enter
through the process for either computed parameters will be erroneous or the
auto-tuning process will simply fail (e.g.: the door of the oven shall not be opened,
not even momentarily.)
Configure the Twido PLC to scan in Periodic mode. Once you have determined
the correct sampling period (Ts) for the auto-tuning, the scan period must be
configured so that the sampling period (Ts) is an exact multiple of the Twido PLC
scan period.

Note: To ensure a correct run of the PID control and of the auto-tuning process, it
is essential that the Twido PLC be configured to execute scans in Periodic mode
(not Cyclic). In Periodic mode, each scan of the PLC starts at regular time intervals.
This way, the sampling rate is constant throughout the measurement duration
(unlike cyclic mode where a scan starts as soon as the previous one ends, which
makes the sampling period unbalanced from scan to scan.)
460 TWD USE 10AE

Advanced Instructions
AT Operating
Modes

The auto-tuning can be used either independently (AT mode) or in conjunction with
the PID control (AT + PID):

AT mode: After convergence of the AT process and successful completion with
the determination of the PID control parameters Kp, Ti and Td (or after detection
of an error in the AT algorithm), the AT numerical output is set to 0 and the
following message appears in the List of PID States drop-down list: "Auto-tuning
complete."
AT + PID mode: The AT is launched first. After successful completion of the AT,
the PID control loop starts (based on the Kp, TI and Td parameters computed by
the AT)."
Note on AT+PID: If the AT algorithm encounters an error:

no PID parameter is computed;
the AT numerical output is set to output last applied to the process before start
of the autotuning;
an error message appears in the List of PID States drop-down list
the PID control is cancelled.

Methods for
Determining the
Sampling Period
(Ts)

As will be explained in the two following sections (see Appendix 1: PID Theory
Fundamentals, p. 476 and Appendix 2: First-Order With Time Delay Model, p. 478),
the sampling period (Ts) is a key parameter of the PID control. The sampling
period can be deduced from the AT time constant (τ).
There are two methods for evaluating the correct sampling period (Ts) by using the
auto-tuning:· They are described in the following sections.

The process response curve method
The trial-and-error method

Both methods are described in the two following subsections.

Introducing the
Process
Response Curve
Method

This method consists in setting a step change at the control process input and
recording the process output curve with time.
The process response curve method makes the following assumption:

The control process can be adequately described as a first-order with time delay
model by the following transfer function:

 (For more details, see Appendix 2: First-Order With Time Delay Model)

Note: Bumpless transition
While in AT+PID mode, the transition from AT to PID is bumpless.

S
U
---- k

1 τp+
--------------- e θp–⋅=
TWD USE 10AE 461

Advanced Instructions
Using the
Process
Response Curve
Method

To determine the sampling period (Ts) using the process response curve method,
follow these steps:

Step Action

1 It is assumed that you have already configured the various settings in the
General, Input, PID, AT and Output tabs of the PID.

2 Select the PID > Output tab from the Application Browser.

3 Select Authorize or Address bit from the Manual mode dropdown list to allow
manual output and set the Output field to a high level (in the [5000-10000]
range).

4 Select PLC > Transfer PC => PLC... from menu bar to download the
application program to the Twido PLC.

5 Within the PID configuration window, switch to Trace mode.

6 Run the PID and check the response curve rise.

7 When the response curve has reached a steady state, stop the PID
measurement.
Note: Keep the PID Trace window active.

8 Use the following graphical method to determine time constant (τ) of the control
process:
1. Compute the process variable output at 63% rise (S[63%]) by using the

following formula: S[63%] = S[initial] + (S[ending]-S[initial])x63%

2. Find out graphically the time abscissa (t[63%]) that corresponds to S(63%).

3. Find out graphically the initial time (t[initial]) that corresponds the start of the

process response rise.
4. Compute the time constant (τ) of the control process by using the following

relationship: τ = t[63%]-t[initial]

9 Compute the sampling period (Ts) based the value of (τ) that you have just
determined in the previous step, using the following rule: Ts = τ/75
Note: The base unit for the sampling period is 10ms. Therefore, you should
round up/down the value of Ts to the nearest 10ms.

10 Select Program > Scan mode edit and proceed as follows:
1. Set the Scan mode of the Twido PLC to Periodic.
2. Set the Scan Period so that the sampling period (Ts) is an exact multiple

of the scan period, using the following rule: Scan Period = Ts / n,
where "n" is a positive integer.

Note: You must choose "n" so that the resulting Scan Period is a positive
integer in the range [2 - 150 ms].
462 TWD USE 10AE

Advanced Instructions
Example of
Process
Response Curve

This example shows you how to measure the time constant (τ) of a simple thermal
process by using the process response curve method described in the previous
subsection.
The experimental setup for the time constant measurement is as follows:

The control process consists in a forced air oven equipped with a heating lamp.
Temperature measurements are gathered by the Twido PLC via a Pt100 probe,
and temperature data are recorded in °C.
The Twido PLC drives a heating lamp via the PWM discrete output of the PID.

The experiment is carried out as follows:

Step Action

1 The PID Output tab is selected from the PID configuration screen.

2 Manual mode is selected from the Output tab.

3 The manual mode Output is set to 10000.

4 The PID run is launched from the PID Trace tab.

5 The PID run is stopped when the oven's temperature has reached a steady
state.
TWD USE 10AE 463

Advanced Instructions
6 The following information is obtained directly from the graphical analysis of the
response curve, as shown in the figure below:

where
S[i] = initial value of process variable = 260

S[e] = ending value of process variable = 660

S[63%] = process variable at 63% rise = S[i] + (S[i] - S[e]) x 63%

 = 260+(660-260)x63%
 = 512
τ = time constant
 = time elapsed from the start of the rise till S[63%] is reached

 = 9 min 30 s = 570 s

7 The sampling period (Ts) is determined using the following relationship:
Ts = τ/75
 = 570/75 = 7.6 s (7600 ms)

Step Action

PID number

Help

PID ?

0

General Input PID AT Output Animation Trace

OK Cancel Previous Next

700

60 0

Initialize

Setpoint Measure

Detach

30

650

600

550

500

450

400

350

300

45 15

60 min

S[i]=260

S[63%]=512

S[e]=660

 =570 sτ
464 TWD USE 10AE

Advanced Instructions
8 In the Program > Scan mode edit dialog box, the Scan Period must be set
so that the sampling period (Ts) is an exact multiple of the scan period, as in
the following example: Scan Period = Ts/76 = 7600/76 = 100 ms (which
satisfies the condition: 2 ms ≤ Scan Period ≤ 150 ms.)

Step Action
TWD USE 10AE 465

Advanced Instructions
Trial-and-Error
Method

The trial-and-error method consists in providing successive guesses of the sampling
period to the auto-tuning function until the auto-tuning algorithm converges
successfully towards Kp, Ti and Td that are deemed satisfactory by the user.

Top perform a trial-and-error estimation of the auto-tuning parameters, follow these
steps:

Note: Unlike the process response curve method, the trial-and-error method is not
based on any approximation law of the process response. However, it has the
advantage of converging towards a value of the sampling period that is in the same
order of magnitude as the actual value.

Step Action

1 Select the AT tab from the PID configuration window.

2 Set the Output limitation of AT to 10000.

3 Select the PID tab from the PID configuration window.

4 Provide the first or nth guess in the Sampling Period field.
Note: If you do not have any first indication of the possible range for the
sampling period, set this value to the minimum possible: 1 (1 unit of 10 ms).

5 Select PLC > Transfer PC => PLC... from menu bar to download the
application program to the Twido PLC.

6 Launch Auto-Tuning.

7 Select the Animation tab from the PID configuration screen.

8 Wait till the auto-tuning process ends.

9 Two cases may occur:
Auto-tuning completes successfully: You may continue to Step 9.
Auto-tuning fails: This means the current guess for the sampling period
(Ts) is not correct. Try a new Ts guess and repeat steps 3 through 8, as
many times as required until the auto-tuning process eventually converges.
Follow these guidelines to provide a new Ts guess:

AT ends with the error message "The computed time constant is
negative!": This means the sampling period Ts is too large. You
should decrease the value of Ts to provide as new guess.
AT ends with the error message "Sampling error!": This means the
sampling period Ts is too small. You should increase the value of Ts to
provide as new guess.

10 You may now view the PID control parameters (Kp, Ti and Td) in Animation tab,
and adjust them in the PID tab of the PID configuration screen, as needed.
Note: If the PID regulation provided by this set of control parameters does not
provide results that are totally satisfactory, you may still refine the trial-and-
error evaluation of the sampling period until you obtain the right set of Kp, Ti
and Td control parameters.
466 TWD USE 10AE

Advanced Instructions
Adjusting PID
Parameters

To refine the process regulation provided by the PID parameters (Kp, Ti, Td)
obtained from auto-tuning, you also have the ability to adjust those parameter values
manually, directly from the PID tab of the PID configuration screen or via the
corresponding memory words (%MW).

Limitations on
Using the Auto-
tuning and the
PID Control

The auto-tuning is best suited for processes whose time constant (τ) and delay-
time (θ) meet the following requirement: (τ + θ) < 2700 s (i.e.: 45 min)
The PID control is best suited for the regulation of processes that satisfy the
following condition: 2 < (τ/θ) < 20, where (τ) is the time constant of the process and
(θ) is the delay-time.

Note: Depending on the ratio (τ/θ):
(τ/θ) < 2 : The PID regulation has reached its limitations; more advanced
regulation techniques are needed in this case.
(τ/θ) > 20 : In this case, a simple on/off (or two-step) controller can be used in
place of the PID controller.
TWD USE 10AE 467

Advanced Instructions
Troubleshooting
Errors of the
Auto-tuning
Function

The following table records the auto-tuning error messages and describes possible
causes as well as troubleshooting actions:

Error Message Possible Cause Explanation / Possible Solution

Autotuning error: the
process variable (PV) limit
has been reached

The process variable is reaching
the maximum value allowed.

This is a system safety.
As the AT is an open-loop process, the Process
Variable (PV) Limit works as an upper limit.

Autotuning error : due to
either oversampling or
output setpoint too low

Any of two possible causes:
Sampling period is too small.
AT Output is set too low.

Increase either the sampling period or the AT
Output Setpoint value.

Autotuning error: the time
constant is negative

The sampling period may be too
large.

For more details, please check out PID Tuning With
Auto-Tuning (AT), p. 460.

Autotuning error: error
calculating Kp

The AT algorithm has failed (no
convergence).

Check the PID and AT parameters and make
adjustments that can improve convergence.
Check also that there is no disturbance that could
affect the process variable.

Autotuning error: time
constant over delay ratio >
20

τ/θ > 20 PID regulation is no longer guaranteed.
For more details, please check out PID Tuning With
Auto-Tuning (AT), p. 460.

Autotuning error: time
constant over delay ratio < 2

τ/θ < 2 PID regulation is no longer guaranteed.
For more details, please check out PID Tuning With
Auto-Tuning (AT), p. 460.

Autotuning error: the limit for
Kp has been exceeded

Computed value of static gain
(Kp) is greater than 10000.

Measurement sensitivity of some application
variables may be too low. The application's
measurement range must be rescaled within the [0-
10000] interval.

Autotuning error: the limit for
Ti has been exceeded

Computed value of integral time
constant (Ti) is greater than
20000.

Computational limit is reached.

Autotuning error: the limit for
Td has been exceeded

Computed value of derivative
time constant (Td) is greater
than 10000.

Computational limit is reached.
468 TWD USE 10AE

Advanced Instructions
PID parameter adjustment method

Introduction Numerous methods to adjust the PID parameters exist, we suggest Ziegler and
Nichols which have two variants:

closed loop adjustment,
open loop adjustment.

Before implementing one of these methods, you must set the PID action direction:
if an increase in the OUT output causes an increase in the PV measurement,
make the PID inverted (KP > 0),
on the other hand, if this causes a PV reduction, make the PID direct (KP < 0).

Closed loop
adjustment

This principal consists of using a proportional command (Ti = 0, Td = 0) to start the
process by increasing production until it starts to oscillate again after having applied
a level to the PID corrector setpoint. All that is required is to raise the critical
production level (Kpc) which has caused the non damped oscillation and the
oscillation period (Tc) to reduce the values giving an optimal regulation of the
regulator.

According to the kind of (PID or PI) regulator, the adjustment of the coefficients is
executed with the following values:

where Kp = proportional production, Ti = integration time and TD = diversion time.

- Kp Ti Td

PID Kpc/1,7 Tc/2 Tc/8

PI Kpc/2,22 0,83 x Tc -

Measure

Tc

time
TWD USE 10AE 469

Advanced Instructions
Open loop
adjustment

As the regulator is in manual mode, you apply a level to the output and make the
procedure response start the same as an integrator with pure delay time. .

The intersection point on the right hand side which is representative of the integrator
with the time axes, determines the time Tu. Next, Tg time is defined as the time
necessary for the controlled variable (measurement) to have the same variation size
(% of the scale) as the regulator output.
According to the kind of (PID or PI) regulator, the adjustment of the coefficients is
executed with the following values:

where Kp = proportional production, Ti = integration time and TD = diversion time.

Note: This adjustment method provides a very dynamic command which can
express itself through unwanted overshootsduring the change of setpoint pulses.
In this case, lower the production value until you get the required behaviour.

- Kp Ti Td

PID -1,2 Tg/Tu 2 x Tu 0,5 x Tu

PI -0,9 Tg/Tu 3,3 x Tu -

Output

Process responseIntegrator
Measure

Tg

S

M = S

Tu

t

t

470 TWD USE 10AE

Advanced Instructions
This adjustment method also provides a very dynamic command, which can express
itself through unwanted overshoots during the change of setpoints’ pulses. In this
case, lower the production value until you get the required behavior. The method is
interesting because it does not require any assumptions about the nature and the
order of the procedure. You can apply it just as well to the stable procedures as to
real integrating procedures. It is really interesting in the case of slow procedures
(glass industry,…) because the user only requires the beginning of the response to
regulate the coefficients Kp, Ti and Td.

Note: Attention to the units. If the adjustment is carried out in PL7, multiply the
value obtained for KP by 100.
TWD USE 10AE 471

Advanced Instructions
Role and influence of PID parameters

Influence of
proportional
action

Proportional action is used to influence the process response speed. The higher the
gain, the faster the response, and the lower the static error (in direct proportion),
though the more stability deteriorates. A suitable compromise between speed and
stability must be found. The influence of integral action on process response to a
scale division is as follows:

Kp too high

Kp correct

Kp too low
Static error

°C

t

472 TWD USE 10AE

Advanced Instructions
Influence of
integral action

Integral action is used to cancel out static error (deviation between the process value
and the setpoint). The higher the level of integral action (low Ti), the faster the
response and the more stability deteriorates. It is also necessary to find a suitable
compromise between speed and stability. The influence of integral action on
process response to a scale division is as follows:

where Kp = proportional gain, Ti = integration time and Td = derivative time.

Note: A low Ti means a high level of integral action.

Ti too high

Ti correct

Ti too low

t

C

TWD USE 10AE 473

Advanced Instructions
Influence of
derivative action

Derivative action is anticipatory. In practice, it adds a term which takes account of
the speed of variation in the deviation, which makes it possible to anticipate changes
by accelerating process response times when the deviation increases and by
slowing them down when the deviation decreases. The higher the level of derivative
action (high Td), the faster the response. A suitable compromise between speed and
stability must be found. The influence of derivative action on process response to a
scale division is as follows:

t

C

Td too high

Td correct

Td too low
474 TWD USE 10AE

Advanced Instructions
Limits of the PID
control loop

If the process is assimilated to a pure delay first order with a transfer function:

where:
=model delay,

= model time constant,

The process control performance depends on the ratio

The suitable PID process control is attained in the following domain: 2- -20

For <2, in other words for fast control loops (low) or for processes with a large
delay (high t) the PID process control is no longer suitable. In such cases more
complex algorithms should be used.

For >20, a process control using a threshold plus hysterisis is sufficient.

H p()() K e τ–()p()
1 θp+()

--------------------=

τ
θ

100%

Measure = M0

Measure = M0+DM

∆M

θτ t
τ
θ

τ
θ

τ
θ

θ

τ
θ

TWD USE 10AE 475

Advanced Instructions
Appendix 1: PID Theory Fundamentals

Introduction The PID control function onboard all Twido controllers provides an efficient control
to simple industrial processes that consist of one system stimulus (referred to as
Setpoint in this document) and one measurable property of the system (referred to
as Measure or Process Variable).

The PID
Controller Model

The Twido PID controller implements a mixed (serial - parallel) PID correction (see
PID Model Diagram below) via an analog measurement and setpoint in the [0-
10000] format and provides an analog command to the controlled process in the
same format.
The mixed form of the PID controller model is described in the following diagram:

where
where:

I = the integral action (acting independently and parallel to the derivative action),
D = the derivative action (acting independently and parallel to the integral
action),
P = the proportional action (acting serially on the combined output of the integral
and derivative actions,
U = the PID controller output (later fed as input into the controlled process.)

I (Ti)

+

+

+ε U

D (Td)

P (Kp)
476 TWD USE 10AE

Advanced Instructions
The PID Control
Law

The PID controller is comprised of the mixed combination (serial - parallel) of the
controller gain (Kp), and the integral (Ti) and derivative (Td) time constants. Thus,
the PID control law that is used by the Twido controller is of the following form (Eq.1):

where
Kp = the controller proportional gain,
Ti = the integral time constant,
Td = the derivative time constant,
Ts = the sampling period,
ε(i) = the deviation (ε(i) = setpoint - process variable.)

Note: Two different computational algorithms are used, depending on the value of
the integral time constant (Ti):

Ti ≠ 0: In this case, an incremental algortihm is used.
Ti = 0: This is the case for non-integrating processes. In this case, a positional
algotrithm is used, along with a +5000 offset that is applied to the PID output
variable.

For a detailed description of Kp, Ti and Td please refer to PID tab of PID function,
p. 439.
As can be inferred from (equ.1) and (equ.1’), the key parameter for the PID
regulation is the sampling period (Ts). The sampling period depends closely on
the time constant (τ), a parameter intrinsic to the process the PID aims to control.
(See Appendix 2: First-Order With Time Delay Model, p. 478.)

u i() KP ε i()
Ts
Ti
----- ε j()

Td
Ts
------ ε i() ε i 1–()–[]+

j 1=

i

∑+

⎩ ⎭
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎧ ⎫

⋅=
TWD USE 10AE 477

Advanced Instructions
Appendix 2: First-Order With Time Delay Model

Introduction This section presents the first-order with time delay model used to describe a variety
of simple but nonetheless important industrial processes, including thermal
processes.

First-Order With
Time Delay
Model

It is widely assumed that simple (one-stimulus) thermal processes can be
adequately approximated by a first-order with time delay model.
The transfer function of such first-order, open-loop process has the following form in
the Laplace domain (equ.2):

where
k = the static gain,
τ = the time constant,
θ = the delay-time,
U = the process input (this is the output of the PID controller),
S = the process output.

S
U
---- k

1 τp+
--------------- e θp–⋅=
478 TWD USE 10AE

Advanced Instructions
The Process
Time Constant τ

The key parameter of the process response law (equ.2) is the time constant τ. It is
a parameter intrinsic to the process to control.
The time constant (τ) of a first-order system is defined as the time (in sec) it takes
the system output variable to reach 63% of the final output from the time the system
started reacting to the step stimulus u(t).
The following figure shows a typical first-order process response to a step stimulus:

where
k = the static gain computed as the ratio ∆S/∆U,
τ = the time at 63% rise = the time constant,
2τ = the time at 86% rise,
3τ = the time at 95% rise.

Note: When auto-tuning is implemented, the sampling period (Ts) must be chosen
in the following range: [τ/125 <Ts < τ/25]. Ideally, you should use [Ts= τ/75]. (See
PID Tuning With Auto-Tuning (AT), p. 460.)

time (t)

Process output
s(t)

Setpoint u(t)

Step response s(t)

τ 2τ 3τ

S
95% of S
86% of S

63% of S

θ : time delay θ+ θ+ θ+

∆U∆s
TWD USE 10AE 479

Advanced Instructions
15.4 Floating point instructions

At a Glance

Aim of this
Section

This section describes advanced floating point (See Floating point and double word
objects, p. 32) instructions in TwidoSoft language.
The Comparison and Assignment instructions are described in the Numerical
Processing, p. 340

What's in this
Section?

This section contains the following topics:

Topic Page

Arithmetic instructions on floating point 481

Trigonometric Instructions 484

Conversion instructions 486

Integer Conversion Instructions <-> Floating 488
480 TWD USE 10AE

Advanced Instructions
Arithmetic instructions on floating point

General These instructions are used to perform an arithmetic operation between two
operands or on one operand.

Structure Ladder Language

Instruction List Language
LD %M0
[%MF0:=%MF10+129.7]

LD %I3.2
[%MF1:=SQRT(%MF10)]

LDR %I3.3
[%MF2:=ABS(%MF20)]

LDR %I3.5
[%MF8:=TRUNC(%MF2)]

+ addition of two operands SQRT square root of an operand

- subtraction of two operands ABS absolute value of an operand

* multiplication of two operands TRUNC whole part of a floating point value

/ division of two operands EXP natural exponential

LOG base 10 logarithm EXPT power of an integer by a real

LN natural logarithm

P

P

%M0

%I3.2

%I3.3

%I3.5

%MF0:=%MF10+129.7

%MF1:=SQRT(%MF10)

%MF2:=ABS(%MF20)

%MF8:=TRUNC(%MF2)
TWD USE 10AE 481

Advanced Instructions
Ladder Language

Instruction List Language
LD %M0
[%MF0:=LOG(%MF10]

LD %I3.2
[%MF2:=LN(%MF20)]

LDR %I3.3
[%MF4:=EXP(%MF40)]

LDR %I3.4
[%MF6:=EXPT(%MF50,%MW52)]

Syntax Operators and syntax of arithmetic instructions on floating point

%MF6:=EXPT(%MF50,%MW52)

P

P

%M0

%I3.2

%I3.3

%I3.4

%MF0:=LOG(%MF10)

%MF2:=LN(%MF20)

%MF4:=EXP(%MF40)

Operators Syntax

+, - *, / Op1:=Op2 Operator Op3

SQRT, ABS, TRUNC,
LOG, EXP, LN

Op1:=Operator(Op2)

EXPT Op1:=Operator (Op2,Op3)
482 TWD USE 10AE

Advanced Instructions
Operands of arithmetic instructions on floating point:

Rules of use Operations on floating point and integer values can not be directly mixed.
Conversion operations (See Integer Conversion Instructions <-> Floating, p. 488)
convert into one or other of these formats.)
The system bit %S18 is managed in the same way as integer operations (See
Arithmetic Instructions on Integers, p. 349), the word %SW17 (See System
Words (%SW), p. 517) indicates the cause of the fault.
When the operand of the function is an invalid number (e.g.: logarithm of a
negative number), it produces an indeterminate or infinite result and changes bit
%S18 to 1, the word %SW17 indicates the cause of the error.

Note: When you perform an addition or subtraction between 2 floating point
numbers, the two operands must comply with the condition: ,
where Op1>Op2. If this condition is not respected, the result is equal to operand 1
(Op1). This phenomenon is of little consequence in the case of an isolated

operation, as the resulting error is very low (), but it can have unforeseen
consequences where the calculation is repeated.
E.g. in the case where the instruction %MF2:= %MF2 + %MF0 is repeated
indefinitely. If the initial conditions are %MF0 = 1.0 and %MF2 = 0, the value %MF2
becomes blocked at 16777216.
We therefore recommend you take great care when programming repeated
calculations. If, however, you wish to program this type of calculation, it is up to the
client application to manage truncation errors.

Operators Operand 1 (Op1) Operand 2 (Op2) Operand 3 (Op3)

+, - *, / %MFi %MFi, %KFi,
immediate value

%MFi, %KFi,
immediate value

SQRT, ABS, LOG,
EXP, LN

%MFi %MFi, %KFi [-]

TRUNC %MFi %MFi, %KFi [-]

EXPT %MFi %MFi, %KFi %MWi, %KWi,
immediate value

Op1 Op2 2 24–×>

2 24–
TWD USE 10AE 483

Advanced Instructions
Trigonometric Instructions

General These instructions enable the user to perform trigonometric operations.

Structure Ladder language

Instruction List Language
LD %M0
[%MF0:=SIN(%MF10)]

LD %I3.2
[%MF2:=TAN(%MF10)]

LDR %I3.3
[%MF4:=ATAN(%MF20)]

SIN sine of an angle expressed as a
radian,

ASIN

arc sine (result within and)

COS cosine of an angle expressed
as a radian,

ACOS arc cosine (result within 0 and)

TAN tangent of an angle expressed
as a radian,

ATAN

arc tangent (result within and)

-π
2---

π
2---

π

-π
2---

π
2---

P

%M0

%I3.2

%I3.3

%MF0:=SIN(%MF10)

%MF2:=TAN(%MF10)

%MF4:=ATAN(%MF20)
484 TWD USE 10AE

Advanced Instructions
Structured text language
IF %M0 THEN
 %MF0:=SIN(%MF10);
END_IF;
IF %I3.2 THEN
 %MF2:=TAN(%MF10);
END_IF;
IF %I3.3 THEN
 %MF4:=ATAN(%MF20);
END_IF;

Syntax Operators, operands and syntax of instructions for trigonometric operations

Rules of use when the operand of the function is an invalid number (e.g.: arc cosine of a
number greater than 1), it produces an indeterminate or infinite result and
changes bit %S18 to 1, the word %SW17 (See System Words (%SW), p. 517)
indicates the cause of the error.
the functions SIN/COS/TAN allow as a parameter an angle between
and but their precision decreases progressively for the angles outside the

period and because of the imprecision brought by the modulo
carried out on the parameter before any operation.

Operators Syntax Operand 1 (Op1) Operand 2 (Op2)

SIN, COS, TAN, ASIN,
ACOS, ATAN

Op1:=Operator(Op2) %MFi %MFi, %KFi

4096π–
4096π

2– π +2π 2π
TWD USE 10AE 485

Advanced Instructions
Conversion instructions

General These instructions are used to carry out conversion operations.

Structure Ladder language

Instruction List Language
LD %M0
[%MF0:=DEG_TO_RAD(%MF10)]

LD %M2
[%MF2:=RAD_TO_DEG(%MF20)]

Structured Text language
IF %M0 THEN
 %MF0:=DEG_TO_RAD(%MF10);
END_IF;
IF %M2 THEN
 %MF2:=RAD_TO_DEG(%MF20);
END_IF;

Syntax Operators, operands and syntax of conversion instructions

DEG_TO_RAD conversion of degrees into radian, the result is the value

of the angle between 0 and

RAD_TO_DEG cosine of an angle expressed in radian, the result is the
value of the angle between 0 and 360 degrees

2π

%M0

%M2
%MF2:=RAD_TO_DEG(%MF20)

%MF0:=DEG_TO_RAD(%MF10)

Operators Syntax Operand 1 (Op1) Operand 2 (Op2)

DEG_TO_RAD
RAD_TO_DEG

Op1:=Operator(Op2) %MFi %MFi, %KFi
486 TWD USE 10AE

Advanced Instructions
Rules of use The angle to be converted must be between -737280.0 and +737280.0 (for
DEG_TO_RAD conversions) or between and (for RAD_TO_DEG
conversions).
For values outside these ranges, the displayed result will be + 1.#NAN, the %S18
and %SW17:X0 bits being set at 1.

4096π– 4096π
TWD USE 10AE 487

Advanced Instructions
Integer Conversion Instructions <-> Floating

General Four conversion instructions are offered.
Integer conversion instructions list<-> floating:

Structure Ladder language

Instruction List Language
LD TRUE
[%MF0:=INT_TO_REAL(%MW10)]

LD I1.8
[%MD4:=REAL_TO_DINT(%MF9)]

Structured Text language
%MF0:=INT_TO_REAL(%MW10);
IF %I1.8 THEN
 %MD4:=REAL_TO_DINT(%MF9);
END_IF;

INT_TO_REAL conversion of an integer word --> floating

DINT_TO_REAL double conversion of integer word --> floating

REAL_TO_INT floating conversion --> integer word (the result is the nearest
algebraic value)

REAL_TO_DINT floating conversion --> double integer word (the result is the
nearest algebraic value)

%MF0:=INT_TO_REAL(%MW10)

%MD4:=REAL_TO_DINT(%MF9)
%I1.8
488 TWD USE 10AE

Advanced Instructions
Syntax Operators and syntax (conversion of an integer word --> floating):

Operands (conversion of an integer word --> floating):

Example: integer word conversion --> floating: 147 --> 1.47e+02

Operators and syntax (double conversion of integer word --> floating):

Operands (double conversion of integer word --> floating):

Example:integer double word conversion --> floating: 68905000 --> 6.8905e+07

Operators and syntax (floating conversion --> integer word or integer double word):

Operators (floating conversion --> integer word or integer double word):

Example:
floating conversion --> integer word: 5978.6 --> 5979
floating conversion --> integer double word: -1235978.6 --> -1235979

Operators Syntax

INT_TO_REAL Op1=INT_TO_REAL(Op2)

Operand 1 (Op1) Operand 2 (Op2)

%MFi %MWi,%KWi

Operators Syntax

DINT_TO_REAL Op1=DINT_TO_REAL(Op2)

Operand 1 (Op1) Operand 2 (Op2)

%MFi %MDi,%KDi

Operators Syntax

REAL_TO_INT Op1=Operator(Op2)

REAL_TO_DINT

Type Operand 1 (Op1) Operand 2 (Op2)

Words %MWi %MFi, %KFi

Double words %MDi %MFi, %KFi

Note: If during a real to integer (or real to integer double word) conversion the
floating value is outside the limits of the word (or double word),bit %S18 is set to 1.
TWD USE 10AE 489

Advanced Instructions
Precision of
Rounding

Standard IEEE 754 defines 4 rounding modes for floating operations.
The mode employed by the instructions above is the "rounded to the nearest" mode:
 "if the nearest representable values are at an equal distance from the theoretical
result, the value given will be the value whose low significance bit is equal to 0".
In certain cases, the result of the rounding can thus take a default value or an excess
value.

For example:
Rounding of the value 10.5 -> 10
Rounding of the value 11.5 -> 12
490 TWD USE 10AE

Advanced Instructions
15.5 Instructions on Object Tables

At a Glance

Aim of this
Section

This section describes instructions specific to tables:
of double words,
of floating point objects.

Assignment instructions for tables are described in the chapter on "basic
instructions" (See Assignment of Word, Double Word and Floating Point Tables,
p. 345).

What's in this
Section?

This section contains the following topics:

Topic Page

Table summing functions 492

Table comparison functions 494

Table search functions 496

Table search functions for maxi and mini values 498

Number of occurrences of a value in a table 499

Table rotate shift function 500

Table sort function 502

Floating point table interpolation function 503

Mean function of the values of a floating point table 507
TWD USE 10AE 491

Advanced Instructions
Table summing functions

General The SUM_ARR function adds together all the elements of an object table:
if the table is made up of double words, the result is given in the form of a double
word
if the table is made up of floating words, the result is given in the form of a floating
word

Structure Ladder language

Instruction List Language
LD %I3.2
[%MD5:=SUM_ARR(%MD3:1)]
%MD5:=SUM_ARR(%KD5:2)
%MF0:=SUM_ARR(%KF8:5)

Syntax Syntax of table summing instruction:

Parameters of table summing instruction

%I3.2
%MD5:=SUM_ARR(%MD3:1)

%MF0:=SUM_ARR(%KF8:5)

%MD5:=SUM_ARR(%KD5:2)

Res:=SUM_ARR(Tab)

Type Result (res) Table (Tab)

Double word tables %MDi %MDi:L,%KDi:L

Floating word tables %MFi %MFi:L,%KFi:L

Note: When the result is not within the valid double word format range according
to the table operand, the system bit %S18 is set to 1.
492 TWD USE 10AE

Advanced Instructions
Example %MD5:=SUM(%MD30:4)
where %MD30=10, %MD31=20, %MD32=30, %MD33=40
%MD5=10+20+30+40=100
TWD USE 10AE 493

Advanced Instructions
Table comparison functions

General The EQUAL _ARR function carries out a comparison of two tables, element by
element.
If a difference is shown, the rank of the first dissimilar elements is returned in the
form of a word, otherwise the returned value is equal to -1.
The comparison is carried out on the whole table.

Structure Ladder language

Instruction List Language
LD %I3.2
[%MW5:=EQUAL_ARR(%MD20:7,KD0:7)]

Structured Text language
%MW0:=EQUAL_ARR(%MD20:7,%KF0:7)

%MW1:=EQUAL_ARR(%MF0:5,%KF0:5)

%MW5:=EQUAL_ARR(%MD20:7,%KD0:7)
%I3.2

%MW0:=EQUAL_ARR(%MD20:7,%KF0:7)

%MW1:=EQUAL_ARR(%MF0:5,%KF0:5)
494 TWD USE 10AE

Advanced Instructions
Syntax Syntax of table comparison instruction:

Parameters of table comparison instructions:

Example %MW5:=EQUAL_ARR(%MD30:4,%KD0:4)
Comparison of 2 tables:

The value of the word %MW5 is 2 (different first rank)

Res:=EQUAL_ARR(Tab1,Tab2)

Type Result (Res) Tables (Tab1 and Tab2)

Double word tables %MWi %MDi:L,%KDi:L

Floating word tables %MWi %MFi:L,%KFi:L

Note:
it is mandatory that the tables are of the same length and same type.

Rank Word Table Constant word tables Difference

0 %MD30=10 %KD0=10 =

1 %MD31=20 %KD1=20 =

2 %MD32=30 %KD2=60 Different

3 %MD33=40 %KD3=40 =
TWD USE 10AE 495

Advanced Instructions
Table search functions

General There are 3 search functions:

FIND_EQR: searches for the position in a double or floating word table of the first
element which is equal to a given value
FIND_GTR: searches for the position in a double or floating word table of the first
element which is greater than a given value
FIND_LTR: searches for the position in a double or floating word table of the first
element which is less than a given value

The result of these instructions is equal to the rank of the first element which is found
or at -1 if the search is unsuccessful.

Structure Ladder language

Instruction List Language
LD %I3.2
[%MW5:=FIND_EQR(%MD20:7,KD0)]
LD %I1.2
[%MW0:=FIND_GTR(%MD20:7,%KD0)]
%MW1:=FIND_LTR(%MF40:5,%KF5)

%MW5:=FIND_EQR(%MD20:7,%KD0)
%I3.2

%MW0:=FIND_GTR(%MD20:7,%KD0)

%MW1:=FIND_LTR(%MF40:5,%KF5)

%I1.2
496 TWD USE 10AE

Advanced Instructions
Syntax Syntax of table search instructions:

Parameters of floating word and double word table search instructions:

Example %MW5:=FIND_EQR(%MD30:4,%KD0)
Search for the position of the first double word =%KD0=30 in the table:

Function Syntax

FIND_EQR Res:=Function(Tab,Val)

FIND_GTR

FIND_LTR

Type Result (Res) Table (Tab) Value (val)

Floating word tables %MWi %MFi:L,%KFi:L %MFi,%KFi

Double word tables %MWi %MDi:L,%KDi:L %MDi,%KDi

Rank Word Table Result

0 %MD30=10 -

1 %MD31=20 -

2 %MD32=30 Value (val), rank

3 %MD33=40 -
TWD USE 10AE 497

Advanced Instructions
Table search functions for maxi and mini values

General There are 2 search functions:

MAX_ARR: search for the maximum value in a double word and floating word
table
MIN_ARR: search for the minimum value in a double word and floating word table

The result of these instructions is equal to the maximum value (or minimum) found
in the table.

Structure Ladder language

Instruction List Language
LD %I1.2
[%MD0:=MIN_ARR(%MD20:7)]
%MF8:=MIN_ARR(%MF40:5)

Syntax Syntax of table search instructions for max and min values:

Parameters of table search instructions for max and min values:

%MD0:=MIN_ARR(%MD20:7)

%MF8:=MIN_ARR(%MF40:5)

%I1.2

Function Syntax

MAX_ARR Res:=Function(Tab)

MIN_ARR

Type Result (Res) Table (Tab)

Double word tables %MDi %MDi:L,%KDi:L

Floating word tables %MFi %MFi:L,%KFi:L
498 TWD USE 10AE

Advanced Instructions
Number of occurrences of a value in a table

General This search function:
OCCUR_ARR: searches in a double word or floating word table for a number of
elements equal to a given value

Structure Ladder language

Instruction List Language
LD %I3.2
[%MW5:=OCCUR_ARR(%MF20:7,%KF0)]
LD %I1.2
[%MW0:=OCCUR_ARR(%MD20:7,%MD1)

Syntax Syntax of table search instructions for max and min values:

Parameters of table search instructions for max and min values:

%MW5:=OCCUR_ARR(%MF20:7,%KF0)
%I3.2

%MW0:=OCCUR_ARR(%MD20:7,%MD1)

%I1.2

Function Syntax

OCCUR_ARR Res:=Function(Tab,Val)

Type Result (Res) Table (Tab) Value (Val)

Double word tables %MWi %MDi:L,%KDi:L %MDi,%KDi

Floating word tables %MFi %MFi:L,%KFi:L %MFi,%KFi
TWD USE 10AE 499

Advanced Instructions
Table rotate shift function

General There are 2 shift functions:

ROL_ARR: performs a rotate shift of n positions from top to bottom of the
elements in a floating word table

Illustration of the ROL_ARR functions

ROR_ARR: performs a rotate shift of n positions from bottom to top of the
elements in a floating word table

Illustration of the ROR_ARR functions

0
1
2
3
4
5

0
1
2
3
4
5

500 TWD USE 10AE

Advanced Instructions
Structure Ladder language

Instruction List Language
LDR %I3.2
[ROL_ARR(%KW0,%MD20:7)]
LDR %I1.2
 [ROR_ARR(2,%MD20:7)]
LDR %I1.3
[ROR_ARR(2,%MF40:5)]

Syntax Syntax of rotate shift instructions in floating word or double word tables ROL_ARR
and ROR_ARR

Parameters of rotate shift instructions for floating word tables: ROL_ARR and
ROR_ARR:

ROL_ARR(%KW0,%MD20:7)
%I3.2

ROR_ARR(2,%MD20:7)

%I1.2

P

P

ROR_ARR(2,%MF40:5)

%I1.3

P

Function Syntax

ROL_ARR Function(n,Tab)

ROR_ARR

Type Number of positions (n) Table (Tab)

Floating word tables %MWi, immediate value %MFi:L

Double word tables %MWi, immediate value %MDi:L

Note: if the value of n is negative or null, no shift is performed.
TWD USE 10AE 501

Advanced Instructions
Table sort function

General The sort function available is as follows:
SORT_ARR: performs sorts in ascending or descending order of the elements
of a double word or floating word table and stores the result in the same table.

Structure Ladder language

Instruction List Language
LD %I3.2
[SORT_ARR(%MW20,%MF0:6)]
LD %I1.2
[SORT_ARR(-1,%MD20:6)]
LD %I1.3
[SORT_ARR(0,%MF40:8)

Syntax Syntax of table sort functions:

the "direction" parameter gives the order of the sort: direction > 0 the sort is done
in ascending order; direction < 0, the sort is done in descending order, direction
= 0 no sort is performed.
the result (sorted table) is returned in the Tab parameter (table to sort).

Parameters of table sort functions:

SORT_ARR(%MW0,%MF0:6)
%I3.2

SORT_ARR(-1,%MD20:6)

%I1.2

SORT_ARR(0,%MD40:8)

%I1.3

Function Syntax

SORT_ARR Function(direction,Tab)

Type Sort direction Table (Tab)

Double word tables %MWi, immediate value %MDi:L

Floating word tables %MWi, immediate value %MFi:L
502 TWD USE 10AE

Advanced Instructions
Floating point table interpolation function

Overview The LKUP function is used to interpolate a set of X versus Y floating point data for
a given X value.

Interpolation
Rule

The LKUP function makes use the linear interpolation rule, as defined in the
following equation:

(equation 1:)

for , where ;

assuming values are ranked in ascending order: .

Graphical
Representation
of the Linear
Interpolation
Rule

The following graph illustrates the linear interpolation rule described above:

Note: If any of two consecutive Xi values are equal (Xi=Xi+1=X), equation (1) yields
an invalid exception. In this case, to cope with this exception the following algorithm
is used in place of equation (1):

(equation 2:)

for , where .

Y Yi
Yi 1+ Yi–()
Xi 1+ Xi–()

----------------------------- X Xi–()⋅+=

Xi X Xi 1+≤ ≤ i 1… m 1–()=

Xi X1 X2 …X… Xm 1– Xm≤ ≤ ≤ ≤

Y
Yi 1+ Yi–()

2-----------------------------=

Xi Xi 1+ X= = i 1… m 1–()=

Xi XXmXi+1X Xm-1

Yi

Y
Ym

Yi+1

Y

Ym-1

0

TWD USE 10AE 503

Advanced Instructions
Syntax of the
LKUP Function

The LKUP function uses three operands, two of which are function attributes, as
described in the following table:

Definition of Op1 Op1 is the memory word that contains the output variable of the interpolation
function.
Depending on the value of Op1, the user can know whether the interpolation was
successful or failed, and what caused for the failure, as outlined in the following
table:

Definition of Op2 Op2 is the floating point variable (%MF0 of the Op3 floating point array) that
contains the user-defined (X) value for which to compute the interpolated (Y) value:

Valid range for Op2 is as follows: .

Syntax Operand 1 (Op1)
Output variable

Operand 2 (Op2)
User-defined (X)
value

Operands 3 (Op3)
User-defined (Xi,Yi)

variable array

[Op1: = LKUP(Op2,Op3)] %MWi %MF0 Integer value, %MWi
or %KWi

Op1 (%Mwi) Description

0 Successful interpolation

1 Interpolation error: Bad array, Xm < Xm-1

2 Interpolation error: Op2 out of range, X < X1

4 Interpolation error: Op2 out of range, X > Xm

8 Invalid size of data array:
Op3 is set as odd number, or
Op3 < 6.

Note: Op1 does not contain the computed interpolation value (Y). For a given (X)
value, the result of the interpolation (Y) is contained in %MF2 of the Op3 array (See
Definition of Op3 below).

X1 Op2 Xm≤ ≤
504 TWD USE 10AE

Advanced Instructions
Definition of Op3 Op3 sets the size (Op3 / 2) of the floating-point array where the (Xi,Yi) data pairs are
stored.
Xi and Yi data are stored in floating point objects with even indexes, starting at
%MF4 (note that %MF0 and %MF2 floating point objects are reserved for the user
set-point X and the interpolated value Y, respectively).

Given an array of (m) data pairs (Xi,Yi), the upper index (u) of the floating point array
(%MFu) is set by using the following relationships:

(equation 3:) ;

(equation 4:) .

The floating point array Op3 (%MFi) has a structure similar to that of the following
example (where Op3=8):

Structure Interpolation operations are performed as follows:

(X) (X1) (X2) (X3)

%MF0 %MF4 %MF8 %MF12

%MF2 %MF6 %MF10 %MF14

(Y) (Y1) (Y2) (Y3)

(Op3=8)

Note: As a result of the above floating-point array's structure, Op3 must meet both
of the following requirements, or otherwise this will trigger an error of the LKUP
function:

Op3 is an even number, and
Op3 ≥ 6 (for there must be at least 2 data points to allow linear interpolation).

Op3 2 m⋅=

u 2 Op3 1–()⋅=

LD %I3.2
[%MF20:=LKUP(%MF0,%KW1)]

LD %I1.2
[%MF22:=LKUP(%MF0,10)]

%MF20:=LKUP(%MF0,%KW1)
%I3.2

%I1.2

%MF22:=LKUP(%MF0,10)
TWD USE 10AE 505

Advanced Instructions
Example The following is an example use of a LKUP interpolation function:
[%MW20:=LKUP(%MF0,10)]
In this example:

%MW20 is Op1 (the output variable).
%MF0 is the user-defined (X) value which corresponding (Y) value must be
computed by linear interpolation.
%MF2 stores the computed value (Y) resulting from the linear interpolation.
10 is Op3 (as given by equation 3 above). It sets the size of the floating point
array. The highest ranking item %MFu, where u=18 is given by equation 4,
above.

There are 4 pairs of data points stored in Op3 array [%MF4..%MF18]:
%MF4 contains X1,%MF6 contains Y1.
%MF8 contains X2,%MF10 contains Y2.
%MF12 contains X3,%MF14 contains Y3.
%MF16 contains X4,%MF18 contains Y4.
506 TWD USE 10AE

Advanced Instructions
Mean function of the values of a floating point table

General The MEAN function is used to calculate the mean average from a given number of
values in a floating point table.

Structure Ladder Language

Instruction List Language
LD %I3.2
[%MF0:=MEAN(%MF10:5)]

Syntax Syntax of the floating point table mean calculation function:

Parameters of the calculation function for a given number L of values from a floating
point table:

%MF0:=MEAN(%MF10:5)
%I3.2

Function Syntax

MEAN Result=Function(Op1)

Operand (Op1) Result (Res)

%MFi:L, %KFi:L %MFi
TWD USE 10AE 507

Advanced Instructions
508 TWD USE 10AE

TWD USE 10AE
16

System Bits and System Words
At a Glance

Subject of this
Chapter

This chapter provides an overview of the system bits and system words that can be
used to create control programs for Twido controllers.

What's in this
Chapter?

This chapter contains the following topics:

Topic Page

System Bits (%S) 510

System Words (%SW) 517
509

System Bits and Words
System Bits (%S)

Introduction The following section provides detailed information about the function of system bits
and how they are controlled.

Detailed
Description

The following table provides an overview of the system bits and how they are
controlled:

System
Bit

Function Description Init
state

Control

%S0 Cold Start Normally set to 0, it is set to 1 by:
A power return with loss of data (battery fault),
The user program or Animation Table Editor,
Operations Display.

This bit is set to 1 during the first complete scan. It is
reset to 0 by the system before the next scan.

0 S or U->S

%S1 Warm Start Normally set to 0, it is set to 1 by:
A power return with data backup,
The user program or Animation Table Editor,
Operations Display.

It is reset to 0 by the system at the end of the complete
scan.

0 S or U->S

%S4
%S5
%S6
%S7

Time base: 10 ms
Time base: 100 ms
Time base: 1 s
Time base: 1 min

The rate of status changes is measured by an internal
clock. They are not synchronized with the controller
scan.
Example: %S4

- S

%S8 Wiring test Initially set to 1, this bit is used to test the wiring when
the controller is in "non-configured" state. To modify
the value of this bit, use the operations display keys to
make the required output status changes:

Set to 1, output reset,
Set to 0, wiring test authorized.

1 U

%S9 Reset outputs Normally set to 0. It can be set to 1 by the program or
by the terminal (in the Animation Table Editor):

At state 1, outputs are forced to 0 when the
controller is in RUN mode,
At state 0, outputs are updated normally.

0 U

5 ms 5 ms
510 TWD USE 10AE

System Bits and Words
%S10 I/O fault Normally set to 1. This bit can be set to 0 by the system
when an I/O fault is detected.

1 S

%S11 Watchdog overflow Normally set to 0. This bit can be set to 1 by the system
when the program execution time (scan time) exceeds
the maximum scan time (software watchdog).
Watchdog overflow causes the controller to change to
HALT.

0 S

%S12 PLC in RUN mode This bit reflects the running state of the controller. The
systems sets the bit to 1 when the controller is running.
Or to 0 for stop, init, or any other state.

0 S

%S13 First cycle in RUN Normally at 0, this bit is set to 1 by the system during
the first scan after the controller has been changed to
RUN.

1 S

%S17 Capacity exceeded Normally set to 0, it is set to 1 by the system:
During a rotate or shift operation. The system
switches the bit output to 1. It must be tested by the
user program, after each operation where there is
a risk of an overflow, then reset to 0 by the user if
an overflow occurs.

0 S->U

%S18 Arithmetic overflow or
error

Normally set to 0. It is set to 1 in the case of an
overflow when a 16 bit operation is performed, that is:

A result greater than + 32 767 or less than - 32 768,
in single length,
A result greater than + 2 147 483 647 or less than
- 2 147 483 648, in double length,
A result greater than + 3.402824E+38 or less than
- 3.402824E+38, in floating point,
Division by 0,
The square root of a negative number,
BTI or ITB conversion not significant: BCD value
out of limits.

It must be tested by the user program, after each
operation where there is a risk of an overflow, then
reset to 0 by the user if an overflow occurs.

0 S->U

%S19 Scan period overrun
(periodic scan)

Normally at 0, this bit is set to 1 by the system in the
event of a scan period overrun (scan time greater than
the period defined by the user at configuration or
programmed in %SW0).
This bit is reset to 0 by the user.

0 S->U

System
Bit

Function Description Init
state

Control
TWD USE 10AE 511

System Bits and Words
%S20 Index overflow Normally at 0, it is set to 1 when the address of the
indexed object becomes less than 0 or more than the
maximum size of an object.
It must be tested by the user program, after each
operation where there is a risk of overflow, then reset
to 0 if an overflow occurs.

0 S->U

%S21 GRAFCET initialization Normally set to 0, it is set to 1 by:
A cold restart, %S0=1,
The user program, in the preprocessing program
part only, using a Set Instruction (S %S21) or a set
coil -(S)- %S21,
The terminal.

At state 1, it causes GRAFCET initialization. Active
steps are deactivated and initial steps are activated.
It is reset to 0 by the system after GRAFCET
initialization.

0 U->S

%S22 GRAFCET reset Normally set to 0, it can only be set to 1 by the program
in pre-processing.
At state 1 it causes the active steps of the entire
GRAFCET to be deactivated. It is reset to 0 by the
system at the start of the execution of the sequential
processing.

0 U->S

%S23 Preset and freeze
GRAFCET

Normally set to 0, it can only be set to 1 by the program
in the pre-processing program module.
Set to 1, it validates the pre-positioning of GRAFCET.
Maintaining this bit at 1 freezes the GRAFCET
(freezes the chart). It is reset to 0 by the system at the
start of the execution of the sequential processing to
ensure that the GRAFCET chart moves on from the
frozen situation.

0 U->S

%S24 Operations Display Normally at 0, this bit can be set to 1 by the user.
At state 0, the Operator Display is operating
normally,
At state 1, the Operator Display is frozen, stays on
current display, blinking disabled, and input key
processing stopped.

0 U->S

System
Bit

Function Description Init
state

Control
512 TWD USE 10AE

System Bits and Words
%S31 Event mask Normally at 1.
Set to 0, events cannot be executed and are
queued.
Set to 1, events can be executed,

This bit can be set to 0 by the user and the system (on
cold re-start).

1 U->S

%S38 Permission for events to
be placed in the events
queue

Normally at 1.
Set to 0, events cannot be placed in the events
queue.
Set to 1, events are placed in the events queue as
soon as they are detected,

This bit can be set to 0 by the user and the system (on
cold re-start).

1 U->S

%S39 Saturation of the events
queue

Normally at 0.
Set to 0, all events are reported,
Set to 1, at least one event is lost.

This bit can be set to 0 by the user and the system (on
cold re-start).

0 U->S

%S50 Updating the date and
time using words
%SW49 to %SW53

Normally on 0, this bit can be set to 1 or 0 by the
program or the Operator Display.

Set to 0, the date and time can be read,
Set to 1, the date and time can be updated.

The controller’s internal RTC is updated on a falling
edge of %S50.

0 U->S

%S51 Time-of-day clock status Normally on 0, this bit can be set to 1 or 0 by the
program or the Operator Display.

Set to 0, the date and time are consistent,
Set to 1, the date and time must be initialized by the
user.

When this bit is set to 1, the time of day clock data is
not valid. The date and time may never have been
configured, the battery may be low, or the controller
correction constant may be invalid (never configured,
difference between the corrected clock value and the
saved value, or value out of range).
State 1 transitioning to state 0 forces a write of the
correction constant to the RTC.

0 U->S

System
Bit

Function Description Init
state

Control
TWD USE 10AE 513

System Bits and Words
%S52 RTC = error This bit managed by the system indicates that the RTC
correction has not been entered, and the date and
time are false.

Set to 0, the date and time are consistent,
At state 1, the date and time must be initialized.

0 S

%S59 Updating the date and
time using word %SW59

Normally on 0, this bit can be set to 1 or 0 by the
program or the Operator Display.

Set to 0, the system word %SW59 is not managed,
Set to 1, the date and time are incremented or
decremented according to the rising edges on the
control bits set in %SW59.

0 U

%S66 BAT LED display
enable/disable
(only on controllers that
support an external
battery:
TWDLCA•40DRF
controllers.)

This system bit can be set by the user. It allows the
user to turn on/off the BAT LED:

Set to 0, BAT LED is enabled (it is reset to 0 by the
system at power-up),
Set to 1, BAT LED is disabled (LED remains off
even if there is a low external battery power or
there is no external battery in the compartment).

0 S or U->S

%S69 User STAT LED display Set to 0, STAT LED is off.
Set to 1, STAT LED is on.

0 U

%S75 External battery status
(only on controllers that
support an external
battery:
TWDLCA•40DRF
controllers.)

This system bit is set by the system. It indicates the
external battery status and is readble by the user:

Set to 0, external battery is operating normally,
Set to 1, external battery power is low, or external
battery is absent from compartment.

0 S

%S95 Restore memory words This bit can be set when memory words were
previously saved to the internal EEPROM. Upon
completion the system sets this bit back to 0 and the
number of memory words restored is set in %SW97

0 U

%S96 Backup program OK This bit can be read at any time (either by the program
or while adjusting), in particular after a cold start or a
warm restart.

Set to 0, the backup program is invalid.
Set to 1, the backup program is valid.

0 S

%S97 Save %MW OK This bit can be read at any time (either by the program
or while adjusting), in particular after a cold start or a
warm restart.

Set to 0, save %MW is not OK.
Set to 1, save %MW is OK.

0 S

System
Bit

Function Description Init
state

Control
514 TWD USE 10AE

System Bits and Words
%S100 TwidoSoft
communications cable
connection

Shows whether the TwidoSoft communication cable is
connected.

Set to 1, TwidoSoft communications cable is either
not attached or TwidoSoft is connected.
Set to 0, TwidoSoft Remote Link cable is
connected.

- S

%S101 Changing a port address
(Modbus protocol)

Used to change a port address using system words
%SW101 (port 1) and %SW102 (port 2). To do this,
%S101 must be set to 1.

Set to 0, the address cannot be changed. The
value of %SW101 and %SW102 matches the
current port address,
Set to 1, the address can be changed by changing
the values of %SW101 (port 1) and %SW102 (port
2). Having modified the values of the system
words, %S101 must be set back to 0.

0 U

%S103
%S104

Using the ASCII protocol Enables the use of the ASCII protocol on Comm 1
(%S103) or Comm 2 (%S104). The ASCII protocol is
configured using system words %SW103 and
%SW105 for Comm 1, and %SW104 and %SW106 for
Comm 2.

Set to 0, the protocol used is the one configured in
Twido Soft,
Set to 1, the ASCII protocol is used on Comm 1
(%S103) or Comm 2 (%S104). In this case, the
system words %SW103 and %SW105 must be
previously configured for Comm 1, and %SW104
and %SW106 for Comm 2.

0 U

%S110 Remote link exchanges This bit is reset to 0 by the program or by the terminal.
Set to 1 for a master, all remote link exchanges
(remote I/O only) are completed.
Set to 1 for a slave, exchange with master is
completed.

0 S->U

%S111 Single remote link
exchange

Set to 0 for a master, a single remote link exchange
is completed.
Set to 1 for a master, a single remote link exchange
is active.

0 S

%S112 Remote link connection Set to 0 for a master, the remote link is activated.
Set to 1 for a master, the remote link is deactivated.

0 U

System
Bit

Function Description Init
state

Control
TWD USE 10AE 515

System Bits and Words
Table
Abbreviations
Described

Abbreviation table:

%S113 Remote link
configuration/operation

Set to 0 for a master or slave, the remote link
configuration/operation is OK.
Set to 1 for a master, the remote link configuration/
operation has an error.
Set to 1 for a slave, the remote link configuration/
operation has an error.

0 S->U

%S118 Remote I/O error Normally set to 1. This bit can be set to 0 when an I/O
fault is detected on the remote link.

1 S

%S119 Local I/O error Normally set to 1. This bit can be set to 0 when an I/O
fault is detected on the remote link. %SW118
determines the nature of the fault. Resets to 1 when
the fault disappears.

1 S

System
Bit

Function Description Init
state

Control

Abbreviation Description

S Controlled by the system

U Controlled by the user

U->S Set to 1 by the user, reset to 0 by the system

S->U Set to 1 by the system, reset to 0 by the user
516 TWD USE 10AE

System Bits and Words
System Words (%SW)

Introduction The following section provides detailed information about the function of the system
words and how they are controlled.

Detailed
Description

The following table provides detailed information about the function of the system
words and how they are controlled:

System
Words

Function Description Control

%SW0 Controller scan
period (periodic task)

Modifies controller scan period defined at configuration through the
user program in the Animation Table Editor.

U

%SW6 Controller Status Controller Status:
0 = NO CONFIG
2 = STOP
3 = RUN
4 = HALT

S

TWD USE 10AE 517

System Bits and Words
%SW7 Controller state Bit [0]: Backup/restore in progress:
Set to 1 if backup/restore in progress,
Set to 0 if backup/restore complete or disabled.

Bit [1]: Controller's configuration OK:
Set to 1 if configuration ok.

Bit [3..2] EEPROM status bits:
00 = No cartridge
01 = 32 Kb EEPROM cartridge
10 = 64 Kb EEPROM cartridge
11 = Reserved for future use

Bit [4]: Application in RAM different than EEPROM:
Set to 1 if RAM application different to EEPROM.

Bit [5]: RAM application different to cartridge:
Set to 1 if RAM application different to cartridge.

Bit [6] not used (status 0)
Bit [7]: Controller reserved:

Set to 1 if reserved.
Bit [8]: Application in Write mode:

Set to 1 if application is protected.
Bit [9] not used (status 0)
Bit [10]: Second serial port installed:

Set to 1 if installed.
Bit [11]: Second serial port type: (0 = EIA RS-232, 1 = EIA RS-
485):

Set to 0 = EIA RS-232
Set to 1 = EIA RS-485

Bit [12]: application valid in internal memory:
Set to 1 if application valid.

Bit [13] Valid application in cartridge:
Set to 1 if application valid.

Bit [14] Valid application in RAM:
Set to 1 if application valid.

Bit [15]: ready for execution:
Set to 1 if ready for execution.

S

%SW11 Software watchdog
value

Contains the maximum value of the watchdog. The value (10 to 500
ms) is defined by the configuration.

U

System
Words

Function Description Control
518 TWD USE 10AE

System Bits and Words
%SW17 Default status for
floating operation

When a fault is detected in a floating arithmetic operation, bit %S18 is
set to 1 and the default status of %SW17 is updated according to the
following coding:

Bit [0]: Invalid operation, result is not a number (1.#NAN or -
1.#NAN),
Bit 1: Reserved,
Bit 2: Divided by 0, result is infinite (-1.#INF or 1.#INF),
Bit 3: Result greater in absolute value than +3.402824e+38, result
is infinite (-1.#INF or 1.#INF).

S and U

%SW18-
%SW19

100 ms absolute
timer counter

The counter works using two words:
%SW18 represents the least significant word,
%SW19 represents the most significant word.

S and U

%SW30 Last scan time Shows execution time of the last controller scan cycle (in ms).
Note: This time corresponds to the time elapsed between the start
(acquisition of inputs) and the end (update of outputs) of a scan cycle.

S

%SW31 Max scan time Shows execution time of the longest controller scan cycle since the
last cold start (in ms).
Notes:

This time corresponds to the time elapsed between the start
(acquisition of inputs) and the end (update of outputs) of a scan
cycle.
To allow proper detection when a pulse signal is provided on input,
the pulse period (Tpulse) of that signal must be longer than twice

the maximum scan time recorded in system word %SW31, as
specified by the following condition:
[Tpulse ≥ 2 x %SW31].

S

%SW32 Min. scan time Shows execution time of shortest controller scan cycle since the last
cold start (in ms).
Note: This time corresponds to the time elapsed between the start
(acquisition of inputs) and the end (update of outputs) of a scan cycle.

S

%SW48 Number of events Shows how many events have been executed since the last cold
start.
Note: Set to 0 (after application loading and cold start), increments on
each event execution.

S

System
Words

Function Description Control
TWD USE 10AE 519

System Bits and Words
System
Words

Function Description Control

%SW49
%SW50
%SW51
%SW52
%SW53

Real-Time Clock
(RTC)

RTC Functions: words containing current date and time values (in
BCD):

S and U

%SW49 xN Day of the week (N=1 for
Monday)

%SW50 00SS Seconds

%SW51 HHMM Hour and minute

%SW52 MMDD Month and day

%SW53 CCYY Century and year

These words are controlled by the system when bit %S50 is at 0.
These words can be written by the user program or by the terminal
when bit %S50 is set to 1. On a falling edge of %S50 the controller’s
internal RTC is updated from the values written in these words.

%SW54
%SW55
%SW56
%SW57

Date and time of the
last stop

System words containing the date and time of the last power failure
or controller stop (in BCD):

S

%SW54 SS Seconds

%SW55 HHMM Hour and minute

%SW56 MMDD Month and day

%SW57 CCYY Century and year

%SW58 Code of last stop Displays code giving cause of last stop: S

1 = Run/Stop input edge

2 = Stop at software fault (controller
scan overshoot)

3 = Stop command

4 = Power outage

5 = Stop at hardware fault
520 TWD USE 10AE

System Bits and Words
System
Word

Function Description Control

%SW59 Adjust current
date

Adjusts the current date.
Contains two sets of 8 bits to adjust current date.
The operation is always performed on rising edge of the bit. This word is
enabled by bit %S59.

U

Increment Decrement Parameter

bit 0 bit 8 Day of week

bit 1 bit 9 Seconds

bit 2 bit 10 Minutes

bit 3 bit 11 Hours

bit 4 bit 12 Days

bit 5 bit 13 Month

bit 6 bit 14 Years

bit 7 bit 15 Centuries

%SW60 RTC correction RTC correction value U

%SW63 EXCH1 block
error code

EXCH1 error code:
0 - operation was successful
1 – number of bytes to be transmitted is too great (> 250)
2 - transmission table too small
3 - word table too small
4 - receive table overflowed
5 - time-out elapsed
6 - transmission
7 - bad command within table
8 - selected port not configured/available
9 - reception error
10 - can not use %KW if receiving
11 - transmission offset larger than transmission table
12 - reception offset larger than reception table
13 - controller stopped EXCH processing

S

%SW64 EXCH2 block
error code

EXCH2 error code: See %SW63. S
TWD USE 10AE 521

System Bits and Words
%SW65 EXCH3 block
error code

EXCH3 error code is implemented on Ethernet-capable
TWDLCAE40DRF Twido controllers only
1-4, 6-13: See %SW63. (Note that eror code 5 is invalid and replaced by
the Ethernet-specific error codes 109 and 122 described below.)
The following are dedicated to Modbus response:
81 - slave (server) PLC returns ILLEGAL FUNCTION response
82 - slave (server) PLC returns ILLEGAL DATA ADDRESS response
83 - slave (server) PLC returns ILLEGAL DATA VALUE response
84 - slave (server) PLC returns SLAVE DEVICE FAILURE response
85 - slave (server) PLC returns ACKNOWLEDGE response
86 - slave (server) PLC returns SLAVE DEVICE BUSY response
87 - slave (server) PLC returns NEGATIVE ACKNOWLEDGE response
88 - slave (server) PLC returns MEMORY PARITY ERROR response
The following are Ethernet-specific error codes:
101 - no such IP address
102 - the TCP connection is broken
103 - no socket available (all connection channels are busy)
104 - network is down
105 - network cannot be reached
106 - network dropped connection on reset
107 - connection aborted by peer device
108 - connection reset by peer device
109 - connection time-out elapsed
110 - rejection on connection attempt
111 - host is down
120 - unknown index (remote device is not indexed in configuration table)
121 - fatal (MAC, Chip, Duplicated IP)122 - receiving timed-out elapsed
after data was sent
123 - Ethernet initialization in progress

S

%SW67 Function and
type of controller

Contains the following information:
Controller type bits [0 -11]
8B0 = TWDLC•A10DRF
8B1 = TWDLC•A16DRF
8B2 = TWDLMDA20DUK/DTK
8B3 = TWDLC•A24DRF
8B4 = TWDLMDA40DUK/DTK
8B6 = TWDLMDA20DRT
8B8 = TWDLCAA40DRF
8B9 = TWDLCAE40DRF
Bit 12,13,14,15 not used = 0

S

System
Word

Function Description Control
522 TWD USE 10AE

System Bits and Words
System
Words

Function Description Control

%SW73
and
%SW74

AS-Interface
System State

Bit [0]: Set to 1 if configuration OK.
Bit [1]: Set to 1 if data exchange enabled.
Bit [2]: Set to 1 if module in Offline mode.
Bit [3]: Set to 1 if ASI_CMD instruction terminated.
Bit [4]: Set to 1 error in ASI_CMD instruction in progress.

S and U

%SW76 to
%SW79

Down counters 1-
4

These 4 words serve as 1 ms timers. They are decremented individually
by the system every ms if they have a positive value. This gives 4 down
counters down counting in ms which is equal to an operating range of 1 ms
to 32767 ms. Setting bit 15 to 1 can stop decrementation.

S and U

%SW80 Base I/O Status Bit [0] Channels in normal operation (for all its channels)
Bit [1] Module under initialization (or of initializing information of all
channels)
Bit [2] Hardware failure (external power supply failure, common to all
channels)
Bit [3] Module configuration fault
Bit [4] Converting data input channel 0 in progress
Bit [5] Converting data input channel 1 in progress
Bit [6] Input thermocouple channel 0 not configured
Bit [7] Input thermocouple channel 1 not configured
Bit [8] Not used
Bit [9] Unused
Bit [10] Analog input data channel 0 over range
Bit [11] Analog input data channel 1 over range
Bit [12] Incorrect wiring (analog input data channel 0 below current range,
current loop open)
Bit [13] Incorrect wiring (analog input data channel 1 below current range,
current loop open)
Bit [14] Unused
Bit [15] Output channel not available

%SW81 Expansion I/O Module 1 Status: Same definitions as %SW80

%SW82 Expansion I/O Module 2 Status: Same definitions as %SW80

%SW83 Expansion I/O Module 3 Status: Same definitions as %SW80

%SW84 Expansion I/O Module 4 Status: Same definitions as %SW80

%SW85 Expansion I/O Module 5 Status: Same definitions as %SW80

%SW86 Expansion I/O Module 6 Status: Same definitions as %SW80

%SW87 Expansion I/O Module 7 Status: Same definitions as %SW80

%SW81 to
%SW87

Expansion
module status
TWD USE 10AE 523

System Bits and Words
%SW96 Command and/or
diagnostics for
save/restore
function of
application
program and
%MW.

Bit [0]: Indicates that the %MW memory words must be saved to
EEPROM:

Set to 1 if a backup is required,
Set to 0 if the backup in progress is not complete.

Bit [1]: This bit is set by the firmware to indicate when the save is
complete:

Set to 1 if the backup is complete,
Set to 0 if a new backup request is asked for.

Bit [2]: Backup error, refer to bits 8, 9, 10 and 14 for further information:
Set to 1 if an error appeared,
Set to 0 if a new backup request is asked for.

Bit [6]: Set to 1 if the controller contains an empty application.
Bit [8]: Indicates that the number of %MWs specified in %SW97 is
greater than the number of %MWs configured in the application:

Set to 1 if an error is detected,
Bit [9]: Indicates that the number of %MWs specified in %SW97 is
greater than the maximum number of %MWs that can be defined by
any application in TwidoSoft.

Set to 1 if an error is detected,
Bit [10]: Difference between internal RAM and internal EEPROM (1 =
yes).

Set to 1 if there is a difference.
Bit [14]: Indicates if an EEPROM write fault has occurred:

Set to 1 if an error is detected,

S and U

%SW97 Command or
diagnostics for
save/restore
function

When saving memory words, this value represents the physical number
%MW to be saved to internal EEPROM. When restoring memory words,
this value is updated with the number of memory words restored to RAM.
For the save operation, when this number is set to 0, memory words will
not be stored. The user must define the user logic program. Otherwise, this
program is set to 0 in the controller application, except in the following
case:
On cold start, this word is set to -1 if the internal Flash EEPROM has no
saved memory word %MW file. In the case of a cold start where the
internal Flash EEPROM contains a memory word %MW list, the value of
the number of saved memory words in the file must be set in this system
word %SW97.

S and U

System
Words

Function Description Control

%SW101
%SW102

Value of the port’s
Modbus address

When bit %S101 is set to 1, you can change the Modbus address of port
1 or port 2. The address of port 1 is %SW101, and that of port 2 is
%SW102.

S

System
Words

Function Description Control
524 TWD USE 10AE

System Bits and Words
%SW103
%SW104

Configuration for use
of the ASCII protocol

When bit %S103 (Comm 1) or %S104 (Comm 2) is set to 1, the ASCII
protocol is used. System word %SW103 (Comm 1) or %SW104 (Comm
2) must be set according to the elements below:

Baud rate:
0: 1200 bauds,
1: 2400 bauds,
2: 4800 bauds,
3: 9600 bauds,
4: 19200 bauds,
5: 38400 bauds.

RTS/CTS:
0: disabled,
1: enabled.

Parity:
00: none,
10: odd,
11: even.

Stop bit:
0: 1 stop bit,
1: 2 stop bits.

Data bits:
0: 7 data bits,
1: 8 data bits.

S

%SW105
%SW106

Configuration for use
of the ASCII protocol

When bit %S103 (Comm 1) or %S104 (Comm 2) is set to 1, the ASCII
protocol is used. System word %SW105 (Comm 1) or %SW106 (Comm
2) must be set according to the elements below:

S

%SW111 Remote link status Indication: Bit 0 corresponds to remote controller 1, bit 1 to remote
controller 2, etc.
Bit [0] to [6]:

Set to 0 = remote controller 1-7 absent
Set to 1 = remote controller 1-7 present

Bit [8] to bit [14]:
Set to 0 = remote I/O detected on remote controller 1-7
Set to 1 = extension controller detected on remote controller 1-7

S

System
Words

Function Description Control

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

End of the character string

D
at

a
bi

t

S
to

p
bi

t

Parity

R
T

S
 /

C
T

S Baud rate

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Timeout frame in ms Timeout response
in multiple of 100 ms
TWD USE 10AE 525

System Bits and Words
Table
Abbreviations
Described

Abbreviation table:

%SW112 Remote Link
configuration/
operation error code

00: successful operations
01: timeout detected (slave)
02: checksum error detected (slave)
03: configuration mismatch (slave)
This is set to 1 by the system and must be reset by the user.

S

%SW113 Remote link
configuration

Indication: Bit 0 corresponds to remote controller 1, bit 1 to remote
controller 2, etc.
Bit [0] to [6]:

Set to 0 = remote controller 1-7 not configured
Set to 1 = remote controller 1-7 configured

Bit [8] to bit [14]:
Set to 0 = remote I/O configured as remote controller 1-7
Set to 1 = peer controller configured as remote controller 1-7

S

%SW114 Enable schedule
blocks

Enables or disables operation of schedule blocks by the user program
or operator display.
Bit 0: 1 = enables schedule block #0
...
Bit 15: 1 = enables schedule block #15
Initially all schedule blocks are enabled.
If schedule blocks are configured the default value is FFFF
If no schedule blocks are configured the default value is 0.

S and U

%SW118 Base controller
status word

Shows faults detected on master controller.
Bit 9: 0 = External fault or comm. Fault
Bit 12: 0 = RTC not installed
Bit 13: 0 = Configuration fault (I/O extension configured but absent or
faulty).
All the other bits of this word are set to 1 and are reserved. For a
controller which has no fault, the value of this word is FFFFh.

S

%SW120 Expansion I/O
module health

One bit per module.
Address 0 = Bit 0
1 = Unhealthy
0 = OK

S

System
Words

Function Description Control

Abbreviation Description

S Controlled by the system

U Controlled by the user
526 TWD USE 10AE

Glossary
% Prefix that identifies internal memory addresses in the controller that are used to
store the value of program variables, constants, I/O, and so on.

Addresses Internal registers in the controller used to store values for program variables,
constants, I/O, and so on. Addresses are identified with a percentage symbol (%)
prefix. For example, %I0.1 specifies an address within the controller RAM memory
containing the value for input channel 1.

Analog
potentiometer

An applied voltage that can be adjusted and converted into a digital value for use by
an application.

Analyze program A command that compiles a program and checks for program errors: syntax and
structure errors, symbols without corresponding addresses, resources used by the
program that are not available, and if the program does not fit in available controller
memory. Errors are displayed in the Program Errors Viewer.

Animation table Table created within a language editor or an operating screen. When a PC is
connected to the controller, provides a view of controller variables and allows values
to be forced when debugging. Can be saved as a separate file with an extension of
.tat.

!

A

TWD USE 10AE 527

Glossary
Animation
Tables Editor

A specialized window in the TwidoSoft application for viewing and creating
Animation Tables.

Application A TwidoSoft application consists of a program, configuration data, symbols, and
documentation.

Application
browser

A specialized window in the TwidoSoft that displays a graphical tree-like view of an
application. Provides for convenient configuration and viewing of an application.

Application file Twido applications are stored as file type .twd.

ASCII (American Standard Code for Information Interchange) Communication protocol for
representing alphanumeric characters, notably letters, figures and certain graphic
and control characters.

Auto line validate When inserting or modifying List instructions, this optional setting allows for program
lines to be validated as each is entered for errors and unresolved symbols. Each
element must be corrected before you can exit the line. Selected using the
Preferences dialog box.

Auto load A feature that is always enabled and provides for the automatic transfer of an
application from a backup cartridge to the controller RAM in case of a lost or
corrupted application. At power up, the controller compares the application that is
presently in the controller RAM to the application in the optional backup memory
cartridge (if installed). If there is a difference, then the copy in the backup cartridge
is copied to the controller and the internal EEPROM. If the backup cartridge is not
installed, then the application in the internal EEPROM is copied to the controller.

Backup A command that copies the application in controller RAM into both the controller
internal EEPROM and the optional backup memory cartridge (if installed).

Client A computer process requesting service from other computer processes.

Coil A ladder diagram element representing an output from the controller.

B

C

528 TWD USE 10AE

Glossary
Cold start or
restart

A start up by the controller with all data initialized to default values, and the program
started from the beginning with all variables cleared. All software and hardware
settings are initialized. A cold restart can be caused by loading a new application into
controller RAM. Any controller without battery backup always powers up in Cold
Start.

Comment lines In List programs, comments can be entered on separate lines from instructions.
Comments lines do not have line numbers, and must be inserted within parenthesis
and asterisks such as: (*COMMENTS GO HERE*).

Comments Comments are texts you enter to document the purpose of a program. For Ladder
programs, enter up to three lines of text in the Rung Header to describe the purpose
of the rung. Each line can consist of 1 to 64 characters. For List programs, enter text
on n unnumbered program line. Comments must be inserted within parenthesis and
asterisks such as: (*COMMENTS GO HERE*).

Compact
controller

Type of Twido controller that provides a simple, all-in-one configuration with limited
expansion. Modular is the other type of Twido controller.

Configuration
editor

Specialized TwidoSoft window used to manage hardware and software
configuration.

Constants A configured value that cannot be modified by the program being executed.

Contact A ladder diagram element representing an input to the controller.

Counter A function block used to count events (up or down counting).

Cross references Generation of a list of operands, symbols, line/rung numbers, and operators used in
an application to simplify creating and managing applications.

Cross
References
Viewer

A specialized window in the TwidoSoft application for viewing cross references.

Data variable See Variable.

Date/Clock
functions

Allow control of events by month, day of month, and time of day. See Schedule
Blocks.

D

TWD USE 10AE 529

Glossary
Default gateway The IP address of the network or host to which all packets addressed to an unknown
network or host are sent. The default gateway is typically a router or other device.

Drum controller A function block that operates similar to an electromechanical drum controller with
step changes associated with external events.

EEPROM Electrically Erasable Programmable Read-Only Memory. Twido has an internal
EEPROM and an optional external EEPROM memory cartridge.

Erase This command deletes the application in the controller, and has two options:
To delete the contents of the controller RAM, the controller internal EEPROM,
and the installed optional backup cartridge.
To delete the contents of the installed optional backup cartridge only.

Executive loader A 32-Bit Windows application used for downloading a new Firmware Executive
program to a Twido controller.

Expansion bus Expansion I/O Modules connect to the base controller using this bus.

Expansion I/O
modules

Optional Expansion I/O Modules are available to add I/O points to a Twido controller.
(Not all controller models allow expansion).

Fast counters A function block that provides for faster up/down counting than available with the
Counters function block. A Fast Counter can count up to a rate of 5 KHz.

FIFO First In, First Out. A function block used for queue operations.

Firmware
executive

The Firmware Executive is the operating system that executes your applications and
manages controller operation.

Forcing Intentionally setting controller inputs and outputs to 0 or 1 values even if the actual
values are different. Used for debugging while animating a program.

E

F

530 TWD USE 10AE

Glossary
Frame A group of bits which form a discrete block of information. Frames contain network
control information or data. The size and composition of a frame is determined by
the network technology being used.

Framing types Two common framing types are Ethernet II and IEEE 802.3.

Function block A program unit of inputs and variables organized to calculate values for outputs
based on a defined function such as a timer or a counter.

Gateway A device which connects networks with dissimilar network architectures and which
operates at the Application Layer. This term may refer to a router.

Grafcet Grafcet is used to represent the functioning of a sequential operation in a structured
and graphic form.
This is an analytical method that divides any sequential control system into a series
of steps, with which actions, transitions, and conditions are associated.

Host A node on a network.

Hub A device which connects a series of flexible and centralized modules to create a
network.

Init state The operating state of TwidoSoft that is displayed on the Status Bar when TwidoSoft
is started or does not have an open application.

Initialize A command that sets all data values to initial states. The controller must be in Stop
or Error mode.

Instance A unique object in a program that belongs to a specific type of function block. For
example, in the timer format %TMi, i is a number representing the instance.

G

H

I

TWD USE 10AE 531

Glossary
Instruction List
language

A program written in instruction list language (IL) is composed of a series of
instructions executed sequentially by the controller. Each instruction is composed of
a line number, an instruction code, and an operand.

Internet The global interconnection of TCP/IP based computer communication networks.

IP Internet Protocol. A common network layer protocol. IP is most often used with TCP.

IP Address Internet Protocol Address. A 32-bit address assigned to hosts using TCP/IP.

Ladder editor Specialized TwidoSoft window used to edit a Ladder program.

Ladder language A program written in Ladder language is composed of graphical representation of
instructions of a controller program with symbols for contacts, coils, and blocks in a
series of rungs executed sequentially by a controller.

Ladder list rung Displays parts of a List program that are not reversible to Ladder language.

Latching input Incoming pulses are captured and recorded for later examination by the application.

LIFO Last In, First Out. A function block used for stack operations.

List editor Simple program editor used to create and edit a List program.

MAC Address Media Access Control address. The hardware address of a device. A MAC address
is assigned to an Ethernet TCP/IP module in the factory.

Master controller A Twido controller configured to be the Master on a Remote Link network.

MBAP Modbus Application Protocol

Memory
cartridge

Optional Backup Memory Cartridges that can be used to backup and restore an
application (program and configuration data). There are two sizes available: 32 and
64 Kb.

L

M

532 TWD USE 10AE

Glossary
Memory usage
indicator

A portion of the Status Bar in the TwidoSoft main window that displays a percentage
of total controller memory used by an application. Provides a warning when memory
is low.

Modbus A master-slave communications protocol that allows one single master to request
responses from slaves.

Modular
controller

Type of Twido controller that offers flexible configuration with expansion capabilities.
Compact is the other type of Twido controller.

Monitor state The operating state of TwidoSoft that is displayed on the Status Bar when a PC is
connected to a controller in a non-write mode.

Network Interconnected devices sharing a common data path and protocol for
communication.

Node An addressable device on a communications network.

Offline operation An operation mode of TwidoSoft when a PC is not connected to the controller and
the application in PC memory is not the same as the application in controller
memory. You create and develop an application in Offline operation.

Offline state The operating state of TwidoSoft that is displayed on the Status Bar when a PC is
not connected to a controller.

Online operation An operation mode of TwidoSoft when a PC is connected to the controller and the
application in PC memory is the same as the application in controller memory.
Online operation can be used to debug an application.

Online state The operating state of TwidoSoft that is displayed on the Status Bar when a PC is
connected to the controller.

Operand A number, address, or symbol representing a value that a program can manipulate
in an instruction.

N

O

TWD USE 10AE 533

Glossary
Operating states Indicates the TwidoSoft state. Displayed in the status bar. There are four operating
states: Initial, Offline, Online, and Monitor.

Operator A symbol or code specifying the operation to be performed by an instruction.

Packet The unit of data sent across a network.

PC Personal Computer.

Peer controller A Twido controller configured as a slave on a Remote Link network. An application
can be executed in the Peer Controller memory and the program can access both
local and expansion I/O data, but I/O data can not be passed to the Master
Controller. The program running in the Peer Controller passes information to the
Master Controller by using network words (%INW and %QNW).

PLC Twido programmable controller. There are two types of controllers: Compact and
Modular.

PLS Pulse Generation. A function block that generates a square wave with a 50% on and
50% off duty cycle.

Preferences A dialog box with selectable options for setting up the List and Ladder program
editors.

Program errors
viewer

Specialized TwidoSoft window used to view program errors and warnings.

Programmable
controller

A Twido controller. There are two types of controllers: Compact and Modular.

Protection Refers to two different types of application protection: password protection which
provides access control, and controller application protection which prevents all
reads and writes of the application program.

Protocol Describes message formats and a set of rules used by two or more devices to
communicate using those formats.

PWM Pulse Width Modulation. A function block that generates a rectangular wave with a
variable duty cycle that can be set by a program.

P

534 TWD USE 10AE

Glossary
RAM Random Access Memory. Twido applications are downloaded into internal volatile
RAM to be executed.

Real-time clock An option that will keep the time even when the controller is not powered for a limited
amount of time.

Reflex output In a counting mode, the very fast counter's current value (%VFC.V) is measured
against its configured thresholds to determine the state of these dedicated outputs.

Registers Special registers internal to the controller dedicated to LIFO/FIFO function blocks.

Remote
controller

A Twido controller configured to communicate with a Master Controller on a Remote
Link network.

Remote link High-speed master/slave bus designed to communicate a small amount of data
between a Master Controller and up to seven Remote Controllers (slaves). There
are two types of Remote Controllers that can be configured to transfer data to a
Master Controller: a Peer Controller that can transfer application data, or a Remote
I/O Controller that can transfer I/O data. A Remote link network can consist of a
mixture of both types.

Resource
manager

A component of TwidoSoft that monitors the memory requirements of an application
during programming and configuring by tracking references to software objects
made by an application. An object is considered to be referenced by the application
if it is used as an operand in a list instruction or ladder rung. Displays status
information about the percentage of total memory used, and provides a warning if
memory is getting low. See Memory Usage Indicator.

Reversible
instructions

A method of programming that allows instructions to be viewed alternately as List
instructions or Ladder rungs.

Router A device that connects two or more sections of a network and allows information to
flow between them. A router examines every packet it receives and decides whether
to block the packet from the rest of the network or transmit it. The router will attempt
to send the packet through the network by the most efficient path.

RTC See Real-Time Clock.

RTU Remote Terminal Unit. A protocol using eight bits that is used for communicating
between a controller and a PC.

R

TWD USE 10AE 535

Glossary
Run A command that causes the controller to run an application program.

Rung A rung is located between two potential bars in a grid and is composed of a group
of graphical elements joined to each other by horizontal and vertical links. The
maximum dimensions of a rung are seven rows and eleven columns.

Rung header A panel that appears directly over a Ladder rung and can be used to document the
purpose of the rung.

Scan A controller scans a program and essentially performs three basic functions. First, it
reads inputs and places these values in memory. Next, it executes the application
program one instruction at a time and stores results in memory. Finally, it uses the
results to update outputs.

Scan mode Specifies how the controller scans a program. There are two types of scan modes:
Normal (Cyclic), the controller scans continuously, or Periodic, the controller scans
for a selected duration (range of 2 - 150 msec) before starting another scan.

Schedule blocks A function block used to program Date and Time functions to control events.
Requires Real-Time Clock option.

Server A computer process that provides services to clients. This term may also refer to the
computer process on which the service is based.

Step A Grafcet step designates a state of sequential operation of automation.

Stop A command that causes the controller to stop running an application program.

Subnet A physical or logical network within an IP network, which shares a network address
with other portions of the network.

Subnet mask A bit mask used to identify or determine which bits in an IP address correspond to
the network address and which bits correspond to the subnet portions of the
address. The subnet mask is the network address plus the bits reserved for
identifying the subnetwork.

Switch A network device which connects two or more separate network segments and
allows traffic to be passed between them. A switch determines whether a frame
should be blocked or transmitted based on its destination address.

S

536 TWD USE 10AE

Glossary
Symbol A symbol is a string of a maximum of 32 alphanumeric characters, of which the first
character is alphabetic. It allows you to personalize a controller object to facilitate
the maintainability of the application.

Symbol table A table of the symbols used in an application. Displayed in the Symbol Editor.

TCP Transmission Control Protocol.

TCP/IP A protocol suite consisting of the Transmission Control Protocol and the Internet
Protocol; the suite of communications protocols on which the Internet is based.

Threshold
outputs

Coils that are controlled directly by the very fast counter (%VFC) according to the
settings established during configuration.

Timer A function block used to select a time duration for controlling an event.

Twido A line of Schneider Electric controllers consisting of two types of controllers
(Compact and Modular), Expansion Modules to add I/O points, and options such as
Real-Time Clock, communications, operator display, and backup memory
cartridges.

TwidoSoft A 32-Bit Windows, graphical development software for configuring and
programming Twido controllers.

Unresolved
symbol

A symbol without a variable address.

Variable Memory unit that can be addressed and modified by a program.

T

U

V

TWD USE 10AE 537

Glossary
Very fast
counter:

A function block that provides for faster counting than available with Counters and
Fast Counters function blocks. A Very Fast Counter can count up to a rate of 20 KHz.

Warm restart A power-up by the controller after a power loss without changing the application.
Controller returns to the state which existed before the power loss and completes
the scan which was in progress. All of the application data is preserved. This feature
is only available on modular controllers.

W

538 TWD USE 10AE

CBAIndex
Symbols
-, 481
%Ci, 329
%DR, 387
%FC, 393
%INW, 42
%MSG, 409
%MSG3 function block

Instruction, 177
%PLS, 384
%PWM, 381
%QNW, 42
%S, 510
%S0, 510
%S1, 510
%S10, 511
%S100, 515
%S101, 515
%S103, 515
%S104, 515
%S11, 511
%S110, 515
%S111, 515
%S112, 515
%S113, 516
%S118, 516
%S119, 516
%S12, 511
%S13, 511
%S17, 511
%S18, 511
%S19, 511
TWD USE 10AE
%S20, 512
%S21, 69, 512
%S22, 69, 512
%S23, 69, 512
%S24, 512
%S31, 513
%S38, 513
%S39, 513
%S4, 510
%S5, 510
%S50, 513
%S51, 513
%S52, 514
%S59, 514
%S6, 510
%S66, 514
%S69, 514
%S7, 510
%S75, 514
%S8, 510
%S9, 510
%S95, 514
%S96, 514
%S97, 514
%SBR, 334
%SCi, 336
%SW, 517
%SW0, 517
%SW101, 524
%SW102, 524
%SW103, 525
%SW104, 525
539

Index
%SW105, 525
%SW106, 525
%SW11, 518
%SW111, 525
%SW112, 526
%SW113, 526
%SW114, 526
%SW118, 526
%SW120, 526
%SW17, 519
%SW18, 519
%SW19, 519
%SW30, 519
%SW31, 519
%SW32, 519
%SW48, 519
%SW49, 520
%SW50, 520
%SW51, 520
%SW52, 520
%SW53, 520
%SW54, 520
%SW55, 520
%SW56, 520
%SW57, 520
%SW58, 520
%SW59, 521
%SW6, 517
%SW60, 521
%SW63, 521
%SW64, 521
%SW65, 522
%SW67, 522
%SW7, 518
%SW73, 523
%SW74, 523
%SW76, 523
%SW77, 523
%SW78, 523
%SW79, 523
%SW80, 523
%SW81..%SW87, 523
%SW96, 524
%SW97, 524
%TM, 326
%VFC, 396
540
*, 481
+, 481
/, 481

A
ABS, 481
Absolute value, 349
Accessing debugging

PID, 450
Accessing the configuration

PID, 432
Accumulator, 274
ACOS, 484
Action Zone, 252
Add, 349
Addressing analog I/O modules, 189
Addressing I/O, 40
Advanced function blocks

Bit and word objects, 370
Programming principles, 372

Analog Channel, 185
Analog Module

operating, 188
Analog module

Example, 193
Analog Modules

Configuring I/O, 190
Analog modules

addressing, 189
AND instructions, 308
Animation tab

PID, 452
Arithmetic Instructions, 349
ASCII

Communication, 87
Communications, 119
Configuring the port, 122
Hardware configuration, 119
Software configuration, 121

ASCII Link
Example, 126

ASIN, 484
AS-Interface Bus V2

configuration screen, 202
TWD USE 10AE

Index
AS-Interface V2 bus
accepting the new configuration, 218
Changing a slave address, 213
Debug screen, 210
Explicit exchanges, 225
Faulty slave, 222
general functional description, 197
I/O addressing, 223
Implicit exchanges, 224
Operating mode, 230
Presentation, 196
Programming and diagnostics for the AS-
Interface bus, 225
Slave diagnostics, 212
Slave insertion, 221
software configuration, 204
software set up principle, 200
transfer of a slave image, 216

Assignment instructions, 306
Numerical, 342

AT tab
PID, 442

ATAN, 484

B
Backup and restore

32K backup cartridge, 56
64K extended memory cartridge, 59
memory structure, 52
without cartridges, 54

Basic function blocks, 317
Bit objects, 370

Addressing, 36
Overview, 27

Bit strings, 45
BLK, 266
Blocks

in Ladder diagrams, 254
Boolean accumulator, 274
Boolean instructions, 300

Assignment, 306
OR, 310
Understanding the format used in this
manual, 302
TWD USE 10AE
Bus AS-Interface V2
automatic slave addressing, 220

Bus AS-Interface V2 bus
debugging the bus, 215

C
Calculation, 349
Checking scan time, 67
Clock functions

Overview, 414
Schedule blocks, 415
Setting date and time, 420
time and date stamping, 418

Closed loop adjustment, 469
Coils, 254

graphic elements, 258
Cold start, 74
Communication by modem, 89
Communication overview, 87
Communications

ASCII, 119
Modbus, 129
Remote Link, 105

Communications cable connection, 89
Comparison block

graphic element, 259
Comparison blocks, 256
Comparison Instructions, 347
Configuration

PID, 432
Configuring

A port for ASCII, 122
Port for Modbus, 131
Transmission/Reception table for ASCII,
122

Connections management, 173
Contacts, 254

graphic element, 257
Control parameters

ASCII, 122
Control table

Modbus, 132
Conversion instructions, 356
COS, 484
541

Index
Counters, 329
Programming and configuring, 332

D
Debugging

PID, 450
Decrement, 349
DEG_TO_RAD, 486
Derivative action, 474
DINT_TO_REAL, 488
Direct labeling, 48
Divide, 349
Documenting your program, 268
Double word objects, 44

Addressing, 39
Overview, 32

Drum controller function block, 387
Drum controllers

programming and configuring, 391

E
Edge detection

falling, 301
Rising, 300

END Instructions, 360
END_BLK, 266
EQUAL_ARR, 494
error, 350
Ethernet

Connections management, 173
Network connection, 155
TCP/IP setup, 162

Event tasks
Different event sources, 79
Event management, 81
Overview, 78

Example
Up/Down Counter, 333

EXCH, 408
EXCH instruction, 408
EXCH3, 177

Error code, 180
Exchange function block, 409
Exclusive OR, instructions, 312
542
EXP, 481
EXPT, 481

F
Fast counter function block, 393
FIFO

introduction, 374
operation, 377

FIND_, 496
Floating objects

Addressing, 38
Floating point objects

Overview, 32
Function Blocks

PWM, 381
Function blocks

Counters, 329
Drum controller, 391
drum controller, 387
graphic element, 259
in programming grid, 255
Overview of basic function blocks, 317
programming standard function blocks,
319
registers, 374
Schedule blocks, 415
Shift Bit Register (%SBR), 334
Step counter (%SCi), 336
timers, 321, 326

G
Gateway address, 157
General tab

PID, 434
Grafcet

associated actions, 293
Examples, 286
Instructions, 284
preprocessing, 290
sequential processing, 291

Grafcet methods, 68
Graphic elements

Ladder diagrams, 257
TWD USE 10AE

Index
I
I/O

Addressing, 40
Idle checking, 168
Increment, 349
Index overflow, 49
Initialization of objects, 76
Input tab

PID, 437
Instructions

AND, 308
Arithmetic, 349
Comparison, 347
Conversion, 356
JMP, 363
Load, 304
logic, 352
NOT, 314
RET, 364
SR, 364
XOR, 312

instructions
END, 360
NOP, 362

INT_TO_REAL, 488
Integral action, 473
IP address, 156

Default IP address, 158

J
JMP, 363
Jump Instructions, 363

L
Labeling

Indexed, 48
Ladder diagrams

blocks, 254
graphic elements, 257
introduction, 250
OPEN and SHORT, 260
programming principles, 252

Ladder List Rung, 267
TWD USE 10AE
Ladder program
reversing to List, 265

Ladder rungs, 251
LAN ACT, 176
LAN ST, 176
LD, 304
LDF, 301, 304
LDN, 304
LDR, 300, 304
LIFO

introduction, 374
operation, 376

Link elements
graphic elements, 257

List instructions, 275
List Language

overview, 272
List Line Comments, 268
LKUP, 503
LN, 481
LOG, 481
logic instructions, 352

M
MAC address, 158
Marked IP, 166
MAX_ARR, 498
MEAN, 507
Memory

32K cartridge, 56
64K cartridge, 59
Structure, 52
without cartridge, 54

Memory bits, 27
Memory words, 29
MIN_ARR, 498
543

Index
Modbus
Communication, 87
Communications, 129
Configuring the port, 131
Hardware configuration, 129
master, 87
Slave, 87
Software configuration, 131
Standard requests, 143
TCP Client/Server, 149
TCP Modbus messaging, 177

Modbus Link
Example 1, 137
Example 2, 140

Modbus TCP/IP
Remote devices, 170

MPP, 280
MPS, 280
MRD, 280
Multiply, 349

N
Network

Addressing, 42
Non-reversible programming, 372
NOP, 362
NOP Instruction, 362
NOT instruction, 314
Numerical instructions

Assignment, 342
shift, 354

Numerical processing
Overview, 341

O
Object tables, 45
Object validation, 26
Objects

Bit objects, 27
Double word, 32
Floating point, 32
Function blocks, 43
Structured, 45
words, 29
544
OCCUR_ARR, 499
OPEN, 260
Open loop adjustment, 470
Operands, 274
Operate blocks, 256

graphic element, 259
Operating modes, 68
Operator Display

Controller ID and states, 235
Overview, 232
Real-Time correction, 246
Serial port settings, 244
System objects and variables, 237
Time of day clock, 245

OR Instruction, 310
OUT_BLK, 266
Output tab

PID, 447
Overflow

Index, 49
overflow, 350
Overview

PID, 425

P
Parameters, 322
Parentheses

modifiers, 279
nesting, 279
using in programs, 278

PID
Animation tab, 452
AT tab, 442
Configuration, 432
Debugging, 450
General tab, 434
Input tab, 437
Output tab, 447
Overview, 425
PID tab, 439
Trace tab, 454

PID characteristics, 429
PID tab

PID, 439
TWD USE 10AE

Index
Pin outs
Communications cable female
connector, 91
Communications cable male connector,
91

Potentiometer, 184
Power cut, 70
Power restoration, 70
Programming

documenting your program, 268
Programming advice, 261
Programming grid, 252
Programming languages

overview, 21
Programming Principles, 372
Proportional action, 472
Protocol

Modbus TCP/IP, 88
Protocols, 87
Pulse generation, 384
Pulse width modulation, 381

Q
Queue, 374

R
RAD_TO_DEG, 486
REAL_TO_DINT, 488
REAL_TO_INT, 488
Real-Time correction factor, 246
Receiving messages, 408
Registers

FIFO, 377
LIFO, 376
programming and configuring, 378

Remainder, 349
Remote Link

Communications, 105
Example, 115
Hardware configuration, 106
Master controller configuration, 108
Remote controller configuration, 108
Remote controller scan synchronization,
TWD USE 10AE
109
Remote I/O data access, 111
Software configuration, 108

Remote link
Communication, 87

RET, 364
Reversibility

guidelines, 266
introduction, 265

Reversible programming, 372
ROL_ARR, 500
ROR_ARR, 500
RTC correction, 414
Run/Stop bit, 71
Rung Header, 253

comments, 269
Rungs

unconditional, 267

S
Scan time, 67
Scanning

Cyclic, 62
Periodic, 64

Shift bit register, 334
Shift instructions, 354
SHORT, 260
SIN, 484
Single/double word conversion instructions,
358
Software watchdog, 67
SORT_ARR, 502
SQRT, 481
Square root, 349
SR, 364
Stack, 374
Stack instructions, 280
Step counter, 336
Subnet mask, 156
Subroutine instructions, 364
Subtract, 349
SUM_ARR, 492
Symbolizing, 50
System bits, 510
System words, 517
545

Index
T
TAN, 484
Task cycle, 67
TCP Client/Server, 149
TCP/IP

Protocol, 88
TCP/IP setup, 162
Test Zone, 252
Timers, 322

introduction, 321
programming and configuring, 326
time base of 1 ms, 327
TOF type, 323
TON type, 324
TP type, 325

TOF timer, 323
TON timer, 324
TP type timer, 325
Trace tab

PID, 454
Transmitting messages, 408
TRUNC, 481
TwidoSoft

Introduction, 20

U
Unconditional rungs, 267
Unit ID, 171

V
Very fast counters function block (%VFC),
396

W
Warm restart, 72
Word Objects, 370
Word objects

Addressing, 37
Overview, 29
546
X
XOR, 312
TWD USE 10AE

	Twido programmable controllers
	Table of Contents
	Safety Information
	About the Book

	Description of Twido Software
	Introduction to Twido Software
	Twido Language Objects
	User Memory
	Controller Operating Modes
	Event task management
	Special Functions
	Communications
	Built-In Analog Functions
	Managing Analog Modules
	Installing the AS-Interface V2 bus
	Operator Display Operation
	Description of Twido Languages
	Ladder Language
	Instruction List Language
	Grafcet
	Description of Instructions and Functions
	Basic Instructions
	Boolean Processing
	Basic Function Blocks
	Numerical Processing
	Program Instructions

	Advanced Instructions
	Advanced Function Blocks
	Clock Functions
	PID Function
	Floating point instructions
	Instructions on Object Tables

	System Bits and System Words
	Glossary
	Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f0072002000680069006700680020007100750061006c0069007400790020007000720065002d007000720065007300730020007000720069006e00740069006e0067002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e002000540068006500730065002000730065007400740069006e006700730020007200650071007500690072006500200066006f006e007400200065006d00620065006400640069006e0067002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

